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Abstract

In this thesis modelling and identification of a laboratory magnetic levitation with
the final aim to design a control system is presented. The CE152 made by Humusoft
is a laboratory magnetic levitation designed for studying system dynamics and con-
trol engineering principles. First, the magnetic levitation set-up is depicted, then
the whole system is disassembled into simpler subsystems, then theoretical model-
ing is systematically described. Identification of the necessary parameters is tackled
using direct and indirect measurement methods and their results are presented. As
the system is nonlinear and unstable, it should be linearized at operating point and
a modified PID digital controller with a fine tuned parameters is designed to track a
small varying input signal. Finally our modelling (mathematical model) is validated
with the real system, the results show that the simulation’s model is adequately
represents the real magnetic levitation model. A laboratory Magnetic Levitation
System Apparatus has been built, and analog PD controller has been designed to
stabilize the system. This apparatus could be used as visual demonstrations of
control principles and electronic design.
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Chapter 1

Introduction and Literature
Review

1.1 Research Motivation and Goal

Magnetic levitation system which can suspend objects without any contact attract
increasingly attention as means of eliminating Coulomb friction due to mechanical
contact [1]. This technology has been widely utilized for various industrial purpose,
such as suspension vehicles, suspension bearing, flywheels, magnetic vibration iso-
lation, magnetically suspended wind tunnel, etc. Furthermore, in recent years, the
need for high performance, accurate magnetic levitation systems is becoming more
and more important [2]. For magnetic levitation systems, modelling and feedback
control is indispensable since they are nonlinear and essentially unstable [3]. In this
thesis an accurate Simulink model will be implemented and validation experiment
will be set up. After that, PI-D controller will be designed and tuned to improve
the system’s performance.

1.2 Literature Review

Magnetic levitation systems are widely used in industry, e.g. levitated vehicles,
magnetic bearing, etc. In a DC magnetic levitation system, it is necessary to con-
struct an accurate model and a high performance feedback controller to stabilize
and control the suspended object since it is an open-loop nonlinear and unstable
system.

The modeling methods is sometime quit complicated if we want an exact and
detailed model. This has received many researches in recent years, e.g. the Euler-
Lagrange’s force balance, lookup table, segmented linear approximation and black
box identification.

In 1992, C.E.line, H.L.. Jou and Y.R. Sheu presented an improved model iden-
tification method for magnetic suspension system to establish reliable and exact
parameters to describe the dynamic motion characteristic. The parameter for each
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test sample can be calculated under the specific operation conditions after some
magnetic field measurements. The results lead effectively to controller design for
magnetic suspension system [4].

In 1997, Toru Namerikawat and Masayuki Fujitaj proposed the set of plant
models of magnetic suspension systems considered various types uncertainties, they
transformed the obtained model to the LFT represented interconnection structure
with the structured mixed uncertainty [5].

In 1999, Lianming Sun, Hiromitsu Ohmori and Akira Sano proposed direct
closed-loop identification method only using the plant input/output data acquired
through an output inter-sampling scheme. By taking the faster sampling of the sys-
tem output than the control interval, the inter-sampled plant model could also be
described by a SIMO model structure, which provided the identifiably of the closed
loop [6].

In 2001, M. Velasco Villa, R. Castro Linares, L.Corona-Ramirez described a
detailed model of the magnetic suspension system which takes into account the
nonlinear characteristic of sensor, that measures the position of the sphere, and the
electromagnetic inductor [7].

In 2002, H. Yu, T.C. Yang, D. Rigas and B.V. Jayawant developed the dynamic
of suspension system by using the Eular—Lagranges formulation [8].

In 2003, Roberto Kawakami, Takashi Yoneyama, Fabio Meneghetti and Rodolfo
Galati proposed a new procedure for obtaining a nominal linear model for a single
axis, attractive magnetic levitation system, the procedure was based on a frequency
domain identification technique [9].

In 2003 , the work of John M. Watkins and George E. piper was a design of
an undergraduate course in Active Magnetic levitation which focused on a project
where the students modeled, analyzed, simulated, designed and implemented, an
active magnetic levitation control system [10] .

In 2005, Winfreed K.N. Anakwa, Namik K. Akyil, and Jose A. Lopez presented
the feedback Inc. model 33 — 210 laboratory scale one DOF magnetic suspension
system as an example of a mechatronic sensing and control plant in a DSP control
application. The nonlinear mathematical model of the magnetic suspension system
was linearized about a desired equilibrium position of 20.395e¢ — 3 meters, and the
resulting linear mathematical model was used to design classical and optimal state
feedback digital controllers for stabilization and tracking [11].

In 2007 , the work of Ji Hyuck Yang, Tae Shin Kim, Su Yong Shim, Young
Sam Lee and Oh Kyu Kwon considered the modeling of the sensor and actuator
characteristics of a magnetic levitation system, using two methods: look up table
and segmented linear approximation [12].

In this thesis, different identification methods were used in order to get exact
parameters of model CE152, for example, to identify the parameters of the ball and
coil subsystem, we have used two interpolation techniques, and we have chosen the
technique which give less error. Our thesis mostly like the paper published in 2005
by Winfreed K.N. Anakwa, Namik K. Akyil, and Jose A. Lopez, but they used state
feedback control.

www.manaraa.com



1.3 Modeling, Identification and Control

Modeling is used for analysis, prediction, control and supervision of a system, models
are classified into two types, linear and nonlinear, most of physical systems are
nonlinear as the magnetic levitation model.

System identification is identified as building a mathematical models based on
observed data from the dynamical response of a system. The identification process
also could be classified into parametric and nonparametric methods:

Parametric: the system equation is described by ordinary differential equation
(ODE) and difference equation along with a set of parameters.

Nonparametric: the system doesn’t employ a parameter vector in search for a
best description, like frequency analysis and a step response.

Moreover, identification means the determination of the model of a dynamic
system from input/output measurements. The knowledge of the model is necessary
for the design and implementation of a high performance control system.

System identification is an experimental approach for determining the dynamic
model of a system. It includes four steps:

Input/output data acquisition under an experimental setup.

Finding a suitable model.

Estimating of the model parameters by comparing the experimental with the
simulated data.

Validation of the identified model.

Linear control is a process of closed loop feedback using a linear controller like
P, PI, PD or PID. However, by linear control, we can only control the magnetic
levitation in a small range and it may be difficult to design a controller which
gives satisfactory, anti-disturbing and robustness. Using PID controller, to get good
performance is not easy since PID parameters are hard to be determined, root locus
technique is used to determine the PID parameters, then a modified PID controller
is used to enhance the system’s performance response.

1.4 Research Results and Contributions

In this thesis, we made a mathematical model for a DC electromagnetic levitation
system CE152 and identified all its parameters, then validated them by comparing
its response with the real model. Since the system is nonlinear and unstable, it
must be linearized at a specific operating point, then a PID controller is designed to
stabilize it, then the PID controller parameters should be fine tuned to have a good
system’s performance. We also have built a labratory magnetic levitation apparatus
that.could be used.as.a visual demonstration of control system principles.
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1.5 Thesis Structure

There are seven chapters in this thesis. Chapter 1 provides introduction and Liter-
ature review. Chapter 2 concerns about maglev principles. Chapter 3 presents the
theory of continuous control system. Chapter 4 presents the theory of computer con-
trol system and explains the stability of digital system. Chapter 5 presents CE152
model setup and the experiments of identification and validation of the system.
Chapter 6 presents a modified PID controller for CE152 model. Chapter 7 describe
building a laboratory levitation system model. Finally, in chapter 8 the conclusions
and suggestions are given.
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Chapter 2

Magnetic Levitation Principles

2.1 Magnetic Levitation Background

Magnetic fields are used to describe forces at a distance from electric currents. These
currents are of two types:

1. free, currents as drawn from a battery pack, power supply, or an electrical
outlet.

2. bound currents as in permanent magnet materials.
The forces come in three variations:

1. An electrical current feels a force from another current.

2. a current feels a force from a permanent magnet.

3. a permanent magnet feels a force from another permanent magnet. This action
at a distance is described by saying a magnetic field exists created by one of
the bodies at the location of the other body. The magnetic field is the medium
by which the force is transferred [13].

In this chapter, a brief discussion concerning the magnetic fields caused by mag-
netized materials (i.e., permanent magnets) is presented. By demonstrating that
magnetic materials can be reduced to effective current distributions, this discussion
forms the basis for calculating the forces on permanent magnets. The magnetic
fields due to free current distributions are calculated next. These fields are used
to calculate the forces felt by current-carrying conductors. Time-varying currents
cause time-varying magnetic fields. These changing magnetic fields induce electric
currents that, in turn, experience a force.

Maglev systems utilize the fundamental physics of electric currents experiencing
forces-at-a-distance. These systems are most often described in terms of the inter-
action of electrical current with magnetic fields. Because the masses of the vehicles
are large, large forces are required for magnetic suspension [14]. These large forces
are provided by the high magnetic fields of either large superconducting currents or
small air gaps-in-normal ferromagnetic circuits.
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Figure 2.1: A volume of magnetized material contains a very large number of aligned
electron spins.

2.2 Magnetic Fields and Forces

2.2.1 Magnetic Fields Caused by Magnetized Materials

Electron spin is a quantum mechanical phenomenon. Its significance here is the
fact that there is associated with the electron spin a magnetic moment of fixed
magnitude. To determine the forces on magnetic materials, we use the fact that the
magnetic moment of the electron spin acts as if it is a current loop.

A volume of magnetized material contains a very large number of aligned electron
spins. This is illustrated schematically in Figure 2.1. A grid pattern was superposed
onto the material to indicate small volumes of materials which can be analyzed
discretely.

Figure 2.2 isolates two small volumes. The one on the left generates a magnetic
field due to its magnetic moment, m. The one on the right generates a magnetic
field by virtue of the current wrapping the volume (this is commonly referred to
as a current sheet.), and otherwise ignores the presence of the magnetic material.
The two magnetic fields are entirely equivalent (external to the material).
The material property M describes the strength of the magnetic material and the
amount of current required per unit distance of height. The parameter K describes
the current per unit height within the current sheet. For modern high performance
neodymium-iron-boron permanent magnets, K a 900,000 amps/meter [15].

Assembling many small volumes in juxtaposition, one can see in Figure 2.3 below
the result of substituting the current loop for the magnetic material; the internal
currents cancel while the surface currents do not cancel. Hence, no matter the
shape of the material, the external magnetic field can be exactly reproduced by a
current stripe along the material perimeter. (This is true if the magnetization is
uniform. If the magnetization is uniform then the currents are equal and cancel. If
the magnetization is not uniform, then the equivalent current distribution can be
calculated by J = curlM, where J is the volume current density.)
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m
L - 3
:t_ I= M dz, K=lidz= M

Equivalent as sources
of magnetic field

Figure 2.2: Two small volumes of magnetized material.

Figure 2.3: Assembling many small volumes in juxtaposition, and the resultant
current loop.
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Figure 2.4: The equivalence of magnetic fields associated with a volume of magne-
tized material.

In summary, the magnetic field of a uniformly magnetized permanent magnet
can be exactly reproduced by a current sheet along the perimeter. This equality is
indicated graphically in Figure 2.4. The magnitude of the current is proportional
to the material thickness with the constant of proportionality dependent upon the
material itself. This equivalence of magnetic fields is commonly exploited to calculate
the forces on permanent magnet materials [16].

2.2.2 Calculating Magnetic Fields

The Biot-Savart Law Equation 2.1 is the fundamental relationship between current
and magnetic field [17]:

) Idl x 7

where,
dB= differential magnetic field, tesla,
pu= permeability, Henry/m,
I= current, amps,
dI= differential length of current-carrying element, m,
r= vector distance from current element to field point, m.

Two simple geometries for calculating the magnetic field are an infinitely long,
straight conductor and a circular loop of conductor.

Straight Conductor

For the straight conductor carrying current upwards along the y-direction in Fig-
ure 2.5, the magnetic field can be calculated at any point due to a differential current
element as in Equation 2.2:

pu Idlsin®
dB = — 2.2
4 r? (22)
By integrating along y from + /- infinity, the result is Equation 2.3:
ul
= 2.3
2R (2:3)

oLl fyl_llsl 8
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dB
(into page)

Figure 2.5: The magnetic field of an infinite straight conductor carrying current
upwards a long y- axis.

Where the direction of the magnetic field is determined by the right hand rule (point
the thumb of the right hand along the direction of current and the fingers curl in
the direction of the magnetic field).

Circular Loop at Center

The magnetic field at the center of a circular loop of wire in Figure 2.6 can also be
calculated from the Biot-Savart Law. In this case, the angle between the current
element and field point is a constant (90°) so the vector cross product always yields
unity. Then the magnetic field Equation 2.4 is:

p I2rR pl

B=H1 =
d 47 R2 2R

(2.4)

Circular Loop Anywhere Along Axis

The magnetic field along the axis of a circular loop of wire in Figure 2.7 can also
be calculated from the Biot-Savart Law. In this case, the angle between the current
element and field point is still a constant (90°) so the vector cross product always
yields unity. The net magnetic field from any current element has vertical and
horizontal components. However, as the current element follows the conductor path,
the horizontal components of the field cancel while the vertical components add.
Then the axial magnetic field Equation 2.5 is:

u I27R uIR R (I R? (25)
, = — ————COSQL = = .
dm 2% + 2 2(22+ R2) 22+ B2 2(22 + R2)3/2

Due to the common occurrence of circular coils, this relationship is very important.
Along the axis the magnetic field is purely vertical. For values of height, z, above
the plane of the coil, which are small compared to the radius, R, (z << R) the
vertical magnetic field is insensitive to z. This is due to the finite radius of the coil.
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Figure 2.6: The magnetic field at the center of a circular loop of wire.
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Figure 2.7: The magnetic field at anywhere a long axis a circular loop of wire.

10

www.manaraa.com




dB

n (into page)
|

Figure 2.8: Magnetic force of a two conductors carrying current.

For heights z much larger than R (z >> R) the axial field decreases as the reciprocal
third power of height. Off-axis, the radial magnetic field decreases as the reciprocal
fourth power of height.

2.2.3 Calculating Magnetic Forces

The force between conductors carrying current is given by the Lorentz Law in Equa-
tion 2.6 :

dF = Idl'x B (2.6)

where,

dF= differential force, Newtons. One simple geometry for calculating the magnetic
force per unit length is two infinitely long, straight conductors parallel to each other
in Equation 2.7 and as shown in Figure 2.8.
F ,LLIllg
| 27R
The negative sign means the two parallel currents attract one another. If the
direction of one of the currents were to be reversed (anti-parallel currents), the force
would also reverse, and the currents would repel. Reversing both currents, of course,
once again produces an attractive force.

(2.7)

To evaluate the magnetic field at off-axis points, the same of Equation 2.1 can
be used. The mathematics quickly becomes intractable and the solution is usually
implemented numerically. Alternatively, specialized computer aided design software
can be used to calculate the magnetic field at arbitrary points in space. The two
methods approach the calculation differently (the former is the idealized magnetic
field numerically approximated while the other is the high fidelity numerical model
of the detailed system). Either method will, of course, yield the same result.

The force due to a current-field interaction off-axis can be calculated according
to-Equation. 2.5.. Thus, in the case of a Neodymium Iron Boron permanent magnet

11
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positioned above a coil, the magnet can be modeled as a current sheet of thickness
equal to that of the magnet. This “current” creates a magnet field at the location
of the coil conductors. The force on the coil and, by Newton’s third law, the force
on the magnet is simply the product of the magnetic field, current and conductor
path length.

Since the equivalent current of the permanent magnet is in the theta direction
(circumferential around the magnet), the vector cross product in the force equation
suggests that to get an axial force, F, we must have a radial magnetic field, B,(—z =
0 x 7). In developing the control system, it is convenient to express the radial
magnetic field in Equation 2.8:

C1

B =Cronn (28)
Where, C'1 and C2 are constants depending upon the geometry of the permanent
magnets and N is a parameter describing the decrease in magnetic field with in-
creasing axial distance. For the case of the axial magnetic field, we saw above C'1
is the surface current density multiplied by the magnet thickness, C'2 is related to
the square of the magnet radius, and NN is three or less, depending upon the rela-
tive axial distance. The radial magnetic field decreases more rapidly with distance
than the axial magnetic field by approximately one more power of the denominator:
3<N <4,

In order to suit the control law, the following form of the force as Equation 2.9
for a magnet-coil interaction is sought:

B K I
(2 4+ D)V Lyas

The various magnet-coil interactions have been analyzed and the appropriate con-
stants have been determined. Because of the inherent non-linearity of magnetic
fields, these constants can vary when the excursion from the calculated system is
large, i.e., the equations have been approximated by constant parameters in the re-
gion of interest. That is, at very large axial heights or very low heights the constants
will differ from those calculated.

(2.9)

The form of the force is the same for interactions between permanent magnets
due to the equivalent current concept discussed above. In this case, however, the
current is not a free parameter for control but is determined by the geometry.

2.2.4 Calculating Induced Currents

A time-varying magnetic field induces voltages in a closed loop according to Fara-
day’s Law as in Equation 2.10 :

99
= —Ny— 2.1
V=N (2.10)

where,
V' is the induced voltage around a closed loop,

12
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Figure 2.9: A single current-carrying conductor moving relative to a conductive
sheet.

N, is the number of turns of conductor around the loop, and,
0¢ /0t is the flux rate of change through that loop.

The negative sign in Faraday’s Law is the manifestation of Lenz’s Law. Lenz’s
Law states that when currents are induced in bodies due to a changing magnetic
field, the currents are in such a direction as to cancel the change in magnetic field
experienced by the body. For instance, if no field is present and suddenly a field
is applied, the induced currents tend to circulate to cancel the magnetic field. If,
however, the magnetic field has previously existed, removal of the magnetic field
causes currents to flow in an attempt to maintain the field.

Consider a single current-carrying conductor moving relative to a conductive
sheet. It can be shown [16] that there is a characteristic velocity of the motion,
w = % , where, p is the sheet material resistivity, ¢ is the thickness of the sheet
and iy is the permeability of free space. At standstill, the magnetic field of the
current will fully permeate the sheet conductor. The magnetic field lines will be
perfect circles about the current center. At very low speeds, (v << w) the field
still permeates the sheet and the field lines will still be very nearly circular. This
situation in shown in Figure 2.9, the induced current in the sheet is K amps/meter.

As the conductor speed is increased to approximately the characteristic velocity
(v ~ w), the movement of the magnetic field through the sheet causes induced
currents to flow. According to Lenz’s Law, these currents flow in such a manner so
as to cancel the effect of the approaching field. Nevertheless, due to finite resistance,
the magnetic field will still penetrate the conductive sheet to an extent and as the
conductor leaves the region of magnetic field additional currents are induced to
maintain the presence of the field. This situation is shown in Figure 2.10 below.
Notice the shear effect of the motion on the magnetic field.

When the speed is increased to substantially above the characteristics veloc-
ity, the conductivity of the sheet prevents the magnetic field from any significant
penetration. The conductor is moving sufficiently fast that significant resistive dis-
sipation does not occur. Each section of sheet generates the exact required current
to perfectly shield the interior of the conductive sheet from the magnetic field. This

13
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Figure 2.10: A situation when the conductor speed is increased to approximately
the characteristic velocity (v ~ w).
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Figure 2.11: A situation when the conductor speed is increased above the charac-
teristic velocity (v >> w).

situation is shown in Figure 2.11. Notice that the magnetic field lines do not enter
the sheet.

2.3 Maglev Applications

Figure 2.12 shows six arrangements used in magnetic levitation of moving vehicles.
Five of the arrangements rely on repulsive forces. The lower elements are fixed (say,
with respect to the earth) and the upper elements levitate. The first arrangement
(permanent magnet like poles) is the common one for demonstrating like magnetic
poles repel. The second and fourth arrangements (permanent magnet and/or su-
perconducting magnet flying over a normal copper lower coil) are similar to that
used for the Japanese superconducting Maglev system. The third and fifth systems
are similar to the Magneplane system where permanent magnets or superconducting
coils fly over normal sheet conductor. Notably, this has been variously proposed as
an inexpensive method to attain levitation [18, 19].
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Figure 2.12: Six arrangements used in magnetic levitation of moving vehicles.

The sixth arrangement (electromagnet under a ferromagnet) is quite different
and is the basis for the German Transrapid Maglev system. The fixed element is
the upper ferromagnetic material and the lower electromagnet is actively controlled.
If the current in the electromagnet is too large, the electromagnet feels a net upward
force until it contacts the ferromagnetic material. If the current is too small, then
insufficient force is available and the electromagnet falls. Hence, the current in the
electromagnet must be continuously adjusted to enable levitation without contact.

For applications involving moving vehicles, all maglev designs share a common
trait: while generating magnetic lift (in the direction perpendicular to travel) there
is also generated magnetic drag (opposing the direction of travel). The details of
the lift and drag forces, of course, depend upon the configuration, but the following
Figure 2.13 (calculated for the conductor moving over the sheet, configuration 5
above) gives an idea of the variation in magnetic lift and drag with speed. Figure 2.13
shows the drag peak and the reduction in drag as speed increases-in marked contrast
to aerodynamic drag. Figure 2.13 also shows the monotonic increase in lift force with
increasing relative speed. Note that the lift force equals the drag force when the
relative speed is equal to the characteristic velocity, w. Note also that this lift force
is equal to 50% of the maximum lift force.

2.4 Current Status of Maglev Internationally

Superconducting Maglev technology was initiated in the late 1960’s and early 1970’s
in the United States in 1969 when Drs. James Powell and Gordan Danby of New
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Figure 2.13: The lift and drag forces calculated for the conductor moving over the
sheet.

York’s Brookhaven National Laboratory invented the concept of a repulsive magnetic
suspension levitation using superconducting magnets. In the mid-1970’s the US
stopped Maglev development due to funding problems. Other countries, however,
continued to develop Maglev and today have viable systems. In the early 1990’s
Maglev research was rekindled at a Federal government level. At various times,
the Department of Transportation’s Federal Railroad Administration and Federal
Transit Administration, NASA, Department of the Air Force, and Department of
the Navy have joined resources for the purpose of developing Maglev and Linear
Motor technology. Although each agency had its own specific application in mind,
a loose consortium seemed to provide the best bang for the buck. The situation
has progressed where today there are several high speed (=~ 300 mph) and low
speed (a~ 100 mph) regions in this country where Maglev is thought to be a viable
alternative means of rapid public transportation, yet it is still unproven in the United
States [20, 22].

Germany’s Transrapid vehicle has been extensively tested and has been proposed
for use on several projects in this country. The Germans are presently constructing
a Transrapid route from Hamburg to Berlin.

Japan is developing a system that uses superconducting magnets and is currently
constructing a major test route that will ultimately be incorporated into a revenue-
producing route. Approximately 80% of this system will be in tunnels cut into
mountains. This has greatly increased the construction cost but has decreased the
cost of land acquisition for the Maglev right-of-way.

16

www.manaraa.com



Chapter 3

Continuous Control Systems

3.1 Continuous-time Models

3.1.1 Time Domain

Equation 3.1 gives an example of a differential equation describing a simple dynamic
system:

d 1

=) + %u(t) (3.1)
In Equation 3.1 u represents the input (or the control) of the system and y the
output. This equation may be simulated by continuous means as illustrated in
Figure 3.1.

The step response illustrated in Figure 3.1 reveals the speed of the output vari-
ations, characterized by the time constant 7', and the final value, characterized by
the static gain G.

Using the differential operator, Equation 3.1 is written as

0+ ) = cult); p= 3.2)

For systems described by differential equations as in Equation 3.1 we distinguish
three types of time response:

dy

- =

Figure 3.1: Simulation and time responses of the dynamic system described by
Equation 3.1 (I- integrator).
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1. The “free” response: it corresponds to the system response starting with an
initial condition y(0) = yo and for an identically zero input for all ¢(u = 0, Vt).

2. The “forced” response: it corresponds to the system response starting with an
identically zero initial condition y(0) = 0 and for a non-zero input u(t) for all
t>0 (u(t) =0,t < 0;u(t) #0,t > 0) and y(t) = 0 for t <0).

3. The “total” response: it represents the sum of the “free” and “forced” re-
sponses (the system being linear, the superposition principle applies) [23].

3.1.2 Frequency Domain

The characteristics of the models in the form of Equation 3.1 can also be studied in

the frequency domain. The idea is then to study the system behavior when the input

is a sinusoidal or a cosinusoidal input that varies over a given range of frequencies.
Remember that

eIt = cos(wt) + jsin(wt) (3.3)

And, consequently, it can be considered that the study of the dynamic system de-
scribed by an equation of the type 3.1, in the frequency domain, corresponds to the
study of the system output for the inputs of the type u(t) = e/*".

Since the system is linear, the output will be a signal containing only the fre-
quency w, the input being amplified or attenuated (and possibly a phase Lag will
appear) according to w; i.e. the output will be of the form

y(t) = H(jw)e" (3.4)

However there is nothing to stop us from considering that the input is formed by
damped or undamped sinusoids and cosinusoids, which in this case are written as

u(t) — 6atejwt — 6((7+jw)t — €St; S=0+w (35)

where s is interpreted as a complex frequency. As a result of the linearity of the
system, the output will reproduce the input signal, amplified (or attenuated), with
a phase lag or not, depending on the values of s; i.e. the output will have the form

y(t) = H(s)e (3.6)

And it must satisfy Equation 3.1 for u(t) = .
From Equation 3.6 one gets
dy(t
—‘Zsj ) = sH(s)e (3.7)

And by substituting Equation 3.7 in Equation 3.1, while bearing in mind that u(t) =
et one obtains

(s + %)H(s)e“ - %e” (3.8)

H(s), which gives the gain and phase deviation introduced by the system of Equa-
tion-3.d-at-different.complex frequencies, is known as the transfer function. The
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Figure 3.2: Response of a dynamic system to periodic inputs.

transfer function H(s) is a function of only the complex variable s. It represents
the ratio between the system output and input when the input is e**. From Equa-
tion 3.8, it turns out that, for the system described by Equation 3.1, the transfer
function is

G
H(s) = o7
The transfer function H(s) generally appears as a ratio of two polynomials in s
(H(s) = B(s)/A(s)). The roots of the numerator polynomial B(s) define the “zeros”
of the transfer function and the roots of the denominator polynomial (A(s)) define
the “poles” of the transfer function. The “zeros” correspond to those complex
frequencies for which the system gain is null and the “poles” correspond to those
complex frequencies for which the system gain is infinite.
Note that the transfer function H(s) can also be obtained by two other tech-
niques:

(3.9)

e Replacing p by s in Equation 3.2 and algebraic computation of the y/u ratio.
e Using the Laplace transform [24].

The use of the representation of dynamic models in the form of transfer functions
presents a certain number of advantages for the analysis and synthesis of closed-loop
control systems. In particular the concatenation of dynamic models described by
transfer functions is extremely easy.

3.1.3 Stability

The stability of a dynamic system is related to the asymptotic behavior of the system
(when t — o0), starting from an initial condition and for an identically zero input.
For example, consider the first-order system described by the differential Equa-
tion 3.1 or by the transfer function given in Equation 3.9.
Consider the free response of the system given in Equation 3.1 for u = 0 and
from an initial condition y(0) = yo:

@ 1

i 7y =0 y(0) =y (3.10)

A solution for y will be in the form

y(t) = Ke” (3.11)

in which K and s are to be determined. From Equation 3.11 one finds
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Figure 3.3: Free response of the first-order system.

d
d—i{ = sKe (3.12)
And Equation 3.10 becomes
Ke* s+l =0 (3.13)
7 .
from which one obtains
Lok (3.14)
§=—=; = .
T’ Yo
And respectively
y(t) = yoe T (3.15)

The response for 7' > 0 and 7" < 0 is illustrated in Figure 3.3.

For T" > 0, we have s < 0 and, when ¢ — oo the output will tend toward zero
(asymptotic stability). For T" < 0, we have s > 0 and, when ¢ — oo, the output will
diverge (instability). Note that s = —7 corresponds to the pole of the first-order
transfer function of Equation 3.9.

We can generalize this result: it is the sign of the real part of the roots of
the transfer function denominator that determines the stability or instability of the
system. In order that a system be asymptotically stable, all the roots of the transfer
function denominator must be characterized by Re s < 0. If one or several roots of
the transfer function denominator are characterized by Re s > 0, then the system
is unstable.

For Re s = 0 we have a limit case of stability because the amplitude of y(¢)
remains equal to the initial condition (e.g. pure integrator, (dy/dt = u(t); in this
case y(t) remains equal to the initial condition).

Figure 3.4 gives the stability and instability domains in the plane of the complex
variable s.

Note that stability criteria have been developed, which allow determining the
existence of unstable roots of a polynomial without explicitly computing its roots,
(e.g. Routh-Hurwitz’ criterion) [24].
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Figure 3.5: Step response.

3.1.4 Time Response

The response of a dynamic system is studied and characterized for a step input. The
response of a stable system is generally of the form shown in Figure 3.5.
The step response is characterized by a certain number of parameters:

e tp(rise time):generally defined as the time needed to reach 90% of the final
value (or as the time needed for the output to pass from 10 to 90% of the
final value). For systems that present an overshoot of the final value, or that
have an oscillating behavior, we often define the rise time as the time needed
to reach for the first time the final value. Subsequently we shall generally use
the first definition of 5.

e ig(settling time): defined as the time needed for the output to reach and
remain within a tolerance zone around the final value (+£10%, 5%, +2%).

e F'V (final value): a fixed output value obtained for ¢t — oc.

e M (maximum overshoot): expressed as a percentage of the final value.

For example, consider the first-order system
G
H(s) =
() 14T
The step response for a first-order system is given by
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Figure 3.6: Step response for a first-order system.
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Figure 3.7: Frequency responses.

y(t) = G(1—e"/T)

Since the input is a unitary step one has

FV = G (static gain); tgp = 2.2T; tg = 2.2T(for £10%FV) ; ts = 3T (for
+5%FV); M =0
and the response of such a system is represented in Figure 3.6. Note that for ¢t =T,
the output reaches 63% of the final value.

3.1.5 Frequency Response

The frequency response of a dynamic system is studied and characterized for peri-
odic inputs of variable frequency but of constant magnitude. For continuous-time
systems, the gain-frequency characteristic is represented on a double logarithmic
scale and the phase frequency characteristic is represented on a logarithmic scale
only for the frequency axis.

The gain G(w) = |H (jw)| is expressed in dB (| H (jw)|dB = 20log|H (jw)]|) on the
vertical axis and the frequency w, expressed in rad/s (w = 27 f where f represents
the frequency in Hz) is represented on the horizontal axis. Figure 3.7 gives some
typical frequency response curves.

The characteristic elements of the frequency response are:

e fp(wp)(bandwidth): the frequency (radian frequency) from which the zero
frequency. (steady-state) gain G(0) is attenuated more than 3 dB; G(wp) =
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G(0) — 3dB; (G(wg) = 0.707G(0)).

e fo(we)(cut-off frequency): the frequency (rad/s) from which the attenuation
introduced with respect to the zero frequency is greater than N dB; G(jw.) =
G(0) — NdB.

e () (resonance factor): the ratio between the gain corresponding to the maxi-
mum of the frequency response curve and the value G(0).

e Slope: it concerns the tangent to the gain frequency characteristic in a certain
region. It depends on the number of poles and zeros and on their frequency
distribution.

Consider, as an example, the first-order system characterized by the transfer function
given by Equation 3.9. For s = jw the transfer function of Equation 3.9 is rewritten
as

G

S 1h T [H (jw)|e’) = |H (jw)|£¢(w) (3.16)

H(jw)

where |H (jw)| represents the modulus (gain) of the transfer function and Z¢(w) the
phase deviation introduced by the transfer function. We then have

G

G(w) = H(jw) = m (3.17)
Lp(w) = tan™" {%8:)))] = tan™ ' [~wT] (3.18)

From Equation 3.17 and from the definition of the bandwidth wg, we obtain:

1
wp = T
Using Equation 3.18, we deduce that for w = wp the system introduces a phase
deviation Z¢(wp) = —45°. Also note that for w = 0, G(0) = G, Z¢(0) = 0° and for
w — oo, G(oo) =0, Lp(oo) = —90°.

Figure 3.8 gives the exact and asymptotic frequency characteristics for a first
order system (gain and phase).

As a general rule, each stable pole introduces an asymptotic slope of -20 dB/dec
(or 6 dB/octave) and an asymptotic phase lag of —90°. On the other hand, each
stable zero introduces an asymptotic slope of +20 dB/dec and an asymptotic phase
shift of +90°.

It follows that the asymptotic slope of the gain-frequency characteristic in dB,
for high frequencies, is given by

% = —(n—m) x 20dB/dec (3.19)
where n is the number of poles and m is the number of zeros.

The relation

Z(co) = —(n—m) x 90° (3.20)

gives.the asymptotic.phase deviation.
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Figure 3.8: Frequency characteristic of a first-order system.

3.1.6 Study of the Second-order System

The normalized differential equation for a second-order system is given by:

ddi(zt) dZStt) +uwpy(t) = wyu(t) (3.21)

Using the operator p = d/dt, Equation 3.21 is rewritten as

—+ QCLUO

(p? + 2Cwop + wd)y(t) = wiu(t) (3.22)

Letting u(t) = € in Equation 3.21, or p = s in Equation 3.22, the normalized
transfer function of a second-order system is obtained:

2
Wy

§2 + 2Cwps + w?

H(s) = (3.23)
in which

e wy: natural frequency in rad/s(wy = 27 fy)

e (: damping factor

The roots of the transfer function denominator (poles) are

1. |¢| < 1, complex poles (oscillatory response):

S1,2 = —CCL)(] + ngv 1-— CQ (324)
(woy/1 — (2 is called “damped resonance frequency”).

2. |¢] > 1, real poles (aperiodic response):

S1,2 = —C(UO + WoV/ CQ —1 (325)

The following situations are thus obtained depending on the value of the damping

Ol LAC U Zyl_ﬂbl
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Figure 3.9: The roots of the second-order system as a function of ¢ (for|¢| < 1).

e ( > 0 asymptotically stable system

e ( < 0 unstable system

These different cases are summarized in Figure 3.9.
The step response for the second-order system described by Equation 3.21 is
given by the formula (for || < 1)

y(t)=1-— ﬁe‘mt (sinwm/l — (%t + 9) (3.26)

in which

0 = cos (¢ (3.27)

Figure 3.10 gives the normalized step responses for the second-order system, This

diagram makes it possible to determine both the response of a given second-order
system and the values of wy and (, in order to obtain a system having a given rise
(or settling) time and overshoot.
To illustrate this, consider the problem of determining wy and ( so that the rise
time (0 to 90% of The final value) is 2.75s with a maximum overshoot ~ 5%. From
Figure 3.10, it is seen that in order to ensure an overshoot ~ 5% we must choose (
= 0.7. The corresponding normalized rise time is: wpty; = 2.75. It can be concluded
that to obtain a rise time of 2.75s, wy = 1rad/sec must be taken.

In order to make easier the determination of wy and ( for a given rise time ¢t and
a given maximum overshoot M, the graph of M as a function of ( and the graph of
wotgr as a function of ¢ have been represented in Figure 3.11 a, b.

The curve given in Figure 3.11 a allows choosing the damping factor ¢ for a given
maximum overshoot M. Once the value of ( chosen, the Figure 3.11 b gives the
corresponding value of wytg. This allows one to determine wy for a given rise time
tR.

The settling time tg, for different values of ¢ and of the tolerance zone around the
final value, can be determined from the normalized responses given in Figure 3.12
gives the normalized frequency responses for a second-order system [25].
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Figure 3.10: Normalized frequency responses of a second-order system to a step
input.
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Figure 3.11: Second-order system: a) maximum overshoot M as a function of the
damping factor (; b) normalized rise time as a function of (.
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Figure 3.12: Normalized frequency responses of a second-order system (gain).

AR\ Zyl_ﬂbl ?

www.manaraa.com




1t} uit} vit
*  Controller > Flaut -

Figure 3.13: Control system.

uq(t) =est y1(t) =Hq(s) eSt=up y2 (1)
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S

H(s) = H1(s) H2(s)

Figure 3.14: Cascade connection of two systems.

3.2 Closed-loop Systems

Figure 3.13 shows a simple control system. y(¢) is the plant output and represents
the controlled variable, u(¢) is the input (control signal) applied to the plant by the
controller (manipulated variable) and r(t) is the reference signal.

The control systems have a closed-loop structure (the control signal is a function
of the difference between the reference and the measured value of the controlled
variable) and contains at least two dynamic systems (the plant and the controller).

We shall examine in this section the computation of the closed-loop transfer
function, the steady-state error with respect to the reference signal and stability of
the closed-loop systems.

3.2.1 Cascaded Systems

Figure 3.14 represents the cascade connection of two linear systems characterized
by the transfer functions H;(s) and Hs(s).
If the input to H;(s) is ui(t) = e the following relations are found:

uy(t) = y1(t) = Hy(s)e® (3.28)

Yo (t) = Ho(s)ua(t) = Ho(s)Hi(s)e® = H(s)e™ (3.29)

and we can conclude that the transfer function of two cascaded systems is

H(s) = Hy(s)Hs(s) (3.30)

or in the general case of n cascaded systems

H(s) = Hp(8)Hy—1(s)....Ho(s)Hy(s) (3.31)
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Figure 3.15: Closed-loop system.
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Figure 3.16: Closed-loop system.

3.2.2 Transfer Function of Closed-loop Systems

Consider the closed-loop system represented in Figure 3.15.

The output y(t) of the closed-loop system in the case of an external reference

r(t) = e’ is written as

y(t) = Her(s)e™ = Ha(s)Hq(s)uq(t)

But u;(t) is given by the relation

U1 (t) =

r(t) —y(t)

Introducing this relation into Equation 3.32, one gets

[1+ Ha(s)Hi(s)ly(t) = Ha(s)Hi(s)r(t)

from which

HCL(S) =

Hy(s)H(s)

1+ Hy(s)Hy(s)

(3.32)

(3.33)

(3.34)

(3.35)

The stability of the closed-loop system will be determined by the real parts of the
roots (poles) of the transfer function denominator Her(s).

3.2.3 Steady-state Error

When carrying out the synthesis of a closed-loop system, our aim is to obtain an
asymptotically stable system having a given response time, a specified overshoot and
ensuring a zero steady-state error with respect to the reference signal. In Figure 3.16,
it is desired that, in steady-state, y(¢) equals r(¢), i.e. the steady-state gain of the
closed-loop system between y(t) and 7(¢) must be equal to 1.

In Figure 3.16 the global transfer function of the feed forward channel Hopy (s) is

of the form

HOL(S) =

. b(] —+ blS + ...+ bmSm

B(s)

ag + a8+ ... + a,s"
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and the transfer function in closed-loop is given by

H, B
Hou(s) = 240 - )
1+HOL A(S)+B(S)
The steady-state corresponds to a zero frequency (s = 0). The steady-state gain is
obtained by making s = 0 in the transfer function given by Equation 3.37.

(3.37)

B(0) bo
r= T
in which y and r represent the stationary values of the output and the reference.
To obtain a unitary steady-state gain (Hor(0) = 1), it is necessary that

y = Her(0)r = (3.38)

bo
ag + b(]

This implies that the denominator of the transfer function H(s) should be of the
following form:

—1=0qp=0 (3.39)

A(s) = s(a15 + ags + ... + ap_15""") = sA'(s) (3.40)
and, respectively:
1 B(s)
H, —. A1
OL(S) s AI(S) (3 )

Thus to obtain a zero steady-state error in closed-loop when the reference is a step,
the transfer function of the feed forward channel must contain an integrator.

This concept can be generalized for the case of time varying references as indi-
cated below with the internal model principle: to obtain a zero steady-state error,
Hor(s) must contain the internal model of the reference r(t).

The internal model of the reference is the transfer function of the filter that
generates 7(t) from the Dirac pulse. E.g., step =(1/s) . Dirac , ramp =(1/s?) .
Dirac).

Therefore, for a ramp reference, Hor(s) must contain a double integrator in
order to obtain a zero steady-state error [26].

3.3 PI and PID Controllers

The PI (proportional + integral) and PID (proportional + integral + derivative)
controllers are widely used for the control of continuous-time systems.

An extremely rich literature has been dedicated to design methods and parame-
ters adjustment of these controllers. Also note that there are several structures for
PI and PID controllers (with different transfer function and tuning parameters).

Synthesis methods for PI and PID controllers have been developed and imple-
mented [26]. These methods can be divided into two categories: a) methods using
frequency and time characteristics of the plant (non-parametric model) and b) meth-
ods using the plant transfer function (parametric model) [27].
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3.3.1 PI Controller

In general PI controllers have as input the difference between the reference and the
measured output and as output the control signal delivered to the actuator (see
Figure 3.15). A typical transfer function of a PI controller is
1 K(Tis +1)
)= [14 ] = FEE
in which K is called the proportional gain and the integral action of the PI controller.
There also exist, however also PI controllers with independent actions, i.e.
Hg(s) = Kp+ !
s) = —
R T
In certain situations the proportional action may operate only on the measured
output as we will later [27, 28].

3.3.2 PID Controller

The transfer function of a typical PID controller is

1 T,
Hpip(s) = K (1 sty ﬁ%) (3.42)
in which K specifies the proportional gain, 7; characterizes the integral action, T,
characterizes the derivative action and 1+ (7,/N)s introduces a filtering effect on
the derivative action (low-pass filter) [28, 29].

By summing up the three terms, the transfer function given by Equation 3.43
can also be rewritten as

K [1+4s(Ti+ %) + s (T, + Bl2)]
Tis(l+%s)

Several structures for PID controllers exist. In addition there are situations when
the proportional and derivative actions act only on the measured output.

Hpip(s) = (3.43)

AR\ Zyl_ﬂbl .

www.manaraa.com




Chapter 4

Computer Control Systems

4.1 Introduction to Computer Control

The first approach for introducing a digital computer or a microprocessor into a
control loop is indicated in Figure 4.1; the measured error between the reference
and the output of the plant is converted into digital form by an analog-to-digital
converter (ADC), at sampling instants &k defined by synchronization clock. The
computer interprets the converted signal y(k) as a sequence of numbers, which it
processes using a control algorithm and generates a new sequence of numbers u(k)
representing the control. By mains of a digital-to-analog converter (DAC), this
sequence is converted into an analog signal, which is maintained constant between
the sampling instants by a zero order hold (ZOH). The cascade: ADC-computer-
DAC should behave in the same way as an analog controller, which implies the use
of a high sampling frequency but the algorithm implemented on the computer is
very simple.

A second and much more interesting approach of a digital computer or micro-
processor in a control loop is illustrated in Figure 4.2 which can be obtained from
Figure 4.1 by moving the reference-output comparator after the analog-to-digital
converter. the reference is now specified in a digital way as a sequence provided by
a computer [30].

In Figure 4.2 the set DAC-plant-ADC is interpreted as a discretized system,
whose control input is the sequence u(k) generated by the computer, the output
being the sequence y(k) resulting from the A /D conversion of the system output y(t).
This discretized system is characterized by a discreet-time model, which describes
the relation between the sequence of numbers u(k) and the sequence of numbers
y(k). This model is related to the continues-time model of the plant.

This approach offers several advantages among these advantages here we recall
the following :

1. The sampling frequency is chosen in accordance with the bandwidth of the
continuous time system (it will be much lower than for the first approach).

2. Possibility of a direct design of the control algorithms tailored to the discretized
plant models.
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Figure 4.1: Digital realization of an analog type controller.
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Figure 4.2: Digital control system
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Figure 4.3: Operation of the analog-to-digital converter (ADC), the digital-to-analog
converter (DAC) and zero-order hold (ZOH).

3. Efficient use of the computer since the increase of the sampling period permits
the computation power to be used in order to implement algorithms which are
more performant but more complex than a PID controller, and which require
a longer computation time.

The changing over to new language (discreet-time dynamic models) makes possi-
ble to use various high performing control strategies which can not be implemented
by analog controllers.

The operating details of the ADC, the DAC and ZOH are illustrated in Fig-
ure 4.3.

The analog-to-digital converter implements two functions:

1. Analog signal sampling: this operation consists in the replacement of the con-
tinuous signal with a sequence of values equally spaced in the time domain
(the temporal distance between two values is the sampling period), as these
values correspond to the continuous signal amplitude at sampling instants.

2. Quantization: this is the operation by means of which the amplitude of a
signal is represented with a discrete set of different values (quantized values of
the signal), generally coded with a binary sequence.

The general use of high-resolution A/D converters (where the samples are coded
with 12 bits or more) allows one to consider the quantification effects as negligible,
and this assumption will hold in the following.

The digital-analog converter (DAC) converts at the sampling instants a discrete
signal.digitally.coded,.in a continuous signal.
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The zero-order hold (ZOH) keeps constant this continuous signal between two

sampling instants (sampling period), in order to provide a continuous-time sig-
nal [31].

4.2 Discretization and Overview of Sampled-data

Systems

4.2.1 Discretization and Choice of Sampling Frequency

Figure 4.4 illustrates the discretization of a sinusoid of frequency f, for several
sampling frequencies f;.

It can be noted that, for a sampling frequency f; = 8 fy , the continuous nature
of the analog signal is unaltered in the sampled signal.

For the sampling frequency fs = 2 fy , if the sampling is carried out at instants
27 fot, other than multiples of 7 , a periodic sampled signal is still obtained.

However if the sampling is carried out at the instants where 27 fyt = nm, the
corresponding sampled sequence is identically zero.

If the sampling frequency is decreased under the limit of f, = 2f, , a periodic
sampled signal still appears, but its frequency differs from that of the continuous

signal (f = f, — fo)-

In order to reconstruct a continuous signal from the sampled sequence, the sam-
pling frequency must verify the condition (Nyquist’s theorem):

fs > 2fmas (4.1)

in which f,4; is the maximum frequency to be transmitted. The frequency
fs = 2fmaz 18 a theoretical limit; in practice. a higher sampling frequency must be
chosen.

The existence of a maximum limit for the frequency that may be converted
without distortion, for a given sampling frequency, is also understandable when it is
observed that the sampling of a continuous-time signal is a “magnitude modulation”
of a “carrier” frequency f;. The modulation effect may be observed in the replication
of the spectrum of the modulating signal (in our case the continuous signal) around
the sampling frequency and its multiples.

The spectrum of the sampled signal. If the maximum frequency of the continuous
signal (fnaz) is less than (1/2)f; is represented in the upper part of Figure 4.5.

The spectrum of the sampled signal, if f,,.. > (1/2) fs, is represented in the lower
part of Figure 4.5. The phenomenon of overlapping (aliasing) can be observed.

This corresponds to the appearance of distortions. The frequency (1/2)f;, which
defines the maximum frequency (fq.) admitted for a sampling with no distortions,
is known as “Nyquist frequency” (or Shannon frequency).
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Figure 4.5: spectrum of sampled signal.
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Figure 4.6: Anti-aliasing filter.
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Figure 4.7: Anti-aliasing filtering with under-sampling.

For a given sampling frequency, in order to avoid the folding (aliasing) of the
spectrum and thus of the distortions, the analog signals must be filtered prior to
sampling to ensure that:

Fas < 5 (4.2)

The filters used are known as “anti-aliasing filters”. A good anti-aliasing filter
must have a minimum of two cascaded second-order cells (fna << (1/2)fs) . An
example of an anti-aliasing filter of this type is given in Figure 4.6. These filters must
introduce a large attenuation at frequencies higher than , but their bandwidth must
be higher than (1/2)f the required bandwidth of the closed loop system (generally
higher than open loop system bandwidth). Circuits of this type (or more complex)
are currently available.

In the case of very low frequency sampling, first a sampling at a higher frequency
is carried out (integer multiple of the desired frequency), using an appropriate analog
anti-aliasing filter. The sampled signal thus obtained is passed through a digital anti-
aliasing filter followed by a frequency divider (decimation) thereby giving a sampled
signal having the required frequency. This procedure is shown in Figure 4.7. It is also
employed every time the frequency of data acquisition is higher than the sampling
frequency chosen for the loop that must be controlled (the sampling frequency should
be an integer divider of the acquisition frequency) [32].

4.2.2 Choice of the Sampling Frequency for Control Sys-

tems

The sampling frequency for digital control systems is chosen according to the de-
sired bandwidth of the closed loop system. Note that no matter how the desired

36

www.manaraa.com



performances are specified, these can always be related to the closed loop system
bandwidth.

Example: Let us consider the performances imposed in section 3.1.6 on the
response (maximum overshoot 5%, rise time 2.27 s). The transfer function to be
determined corresponds to the desired closed loop system transfer function. From
the diagrams given in Figure 3.11 we have deduced that the closed loop transfer
function must be a normalized second-order transfer function with ¢ = 0.7 and
wo =1 rad/s. By immediately using the diagrams given in Figure 3.12 it can be
observed that the bandwidth of the closed loop system is approximately equal to

1
CL
= —H
B 27 ?

The rule used to choose the sampling frequency in control systems is the following:

fs = (6t025)fS* (4.3)

where:
fs: sampling frequency, f5%: closed loop system bandwidth

Rule of Equation 4.3 is equally used in open loop, when it is desired to choose
the sampling frequency in order to identify the discrete-time model of a plant. In
this case fST is replaced by an estimation of the bandwidth of the plant.

For information purposes, Table 4.1 gives the sampling periods (T = 1/ fs) used
for the digital control of different types of plants.

The rule for choosing the sampling frequency given in Equation 4.3 can be con-
nected to the transfer function parameters.

First- order system

1
H =
(S) 1 + ST(]
In this case the system bandwidth is
1
fe=Jfo= T
(an attenuation greater than 3 dB is introduced for frequencies higher than wy =
1/T0 — f() )
By applying the rule of Equation 4.3 the condition for choosing the sampling
period is obtained (T = +):
T
f<n<n (4.4)

This corresponds to the existence of two to nine samples on the rise time of a step
response.

Second- order system
2
Wo
wd + 2Cwos + 2

H(s) =
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Table 4.1:

Choice of the sampling period for digital control systems

Type of variable (or | Sampling period (s)
plant)

Flow rate 1-3

Level 5-10
Pressure 1-5
Temperature 10 - 180
Distillation 10 - 180
Servo-mechanisms 0.001 - 0.05
Catalytic reactors 10 - 45
Cement plants 20 - 45
Dryers 20 - 45

The bandwidth of the second-order system depends on wg and on ( (see Fig-
ure 3.12).
For example:

(=07= fp=2
2T

0.6
(=1=fp= 0
2T

By applying the rule of Equation 4.3. the following relations are obtained between
the natural frequency wy and the sampling period 75 :
0.25 < weTs < 1;

¢=07 (4.5)

04 <wls <1.75; (=1 (4.6)

The lower values correspond to the choice of a high sampling frequency and the
upper values to the choice of a low sampling frequency. For simplicity’s sake. given
that in closed loop the behavior frequently chosen as the desired behavior is that of
a second order having a damping factor ¢ between 0.7 and 1, the following rule can
be used (approximation of Equations 4.5 and 4.6) [33]:

0.25 < weTs < 1.5;

07<¢<1 (4.7)

4.3 Discrete-time Models

4.3.1 Time Domain

Figure 4.8 illustrates the response of a continuous-time system to a step input, a
response that can be simulated by a first order system (an integrator with a feedback
gain indicated in the figure).
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Figure 4.9: Discrete-time model.

The corresponding model is described by the differential equation

dy 1 a

- __ —= 4,
Y () + ) (18)
or by the transfer function
G
H(s) = 4.
() 14 sT (4.9)

where 7' is the time constant of the system and G is the gain.

If the input u(¢) and the output y(t) are sampled with a specified sampling period,
the representations of u(¢) and y(t) are obtained as number sequences in which ¢ (or
k) is now the normalized discrete-time (real time divided by the sampling period,
t = t/Ts). The relation between the input sequence u(t) and the output sequence
y(t) can be simulated by the scheme given in Figure 4.9 by using a delay (backward
shift) operator (symbolized by ¢ ly(t — 1) = ¢ 'y(¢) ), instead of an integrator.
This relation is described in the time domain by the algorithm (known as recursive
equation or difference equation)

y(t) = —ary(t — 1) + byu(t — 1) (4.10)

Let us now examine in greater detail the discrete-time model given by Equation 4.10
for a zero initial condition (y(0) = 0) and a discrete-time unit step input:

0 t<1
u(t):{l t>0
39
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Table 4.2: Step response of a first-order discrete-time model a; = —0.5,b; = 0.5

T 0 1 2 3 1 5
" 0 0.5 0.75 0875 0937 ]0.969
3
1_‘|— ————————————
L ]
& [ ]
05 [
I L =
12 3 4 95 6 t

Figure 4.10: Step response of a first order discrete time mode(a; = —0.5,b; = 0.5).

The response is directly computed by recursively using Equation 4.10 from ¢ = 0 (in
the case of discrete-time models there are no problem with the integration of the
differential equations like in continuous time). We shall examine two cases.

case 1

a; = —05, b1 =0.5

The output values for different instants are given in Table 4.2 and the corre-
sponding sequence is represented in Figure 4.10.

It is observed that the response obtained resembles the step response of a continuous-
time first order system which has been sampled. An equivalent time constant for the
continuous-time system can even be determined (rise time from 0 to 90%:t,=2.2T).
From Table 4.2, one then obtains

S« T <4l

case 2

a; = 05, bl =1.5

Output values for different instants are given in Table 4.3 and the corresponding
sequence is represented in Figure 4.11.

An oscillatory damped response is observed with a period equal to two sampling peri-
ods. This type of phenomenon cannot result from the discretization of a continuous-
time first order system, since this latter is always a-periodic. It may thus be con-

cluded that the first order discrete-time model corresponds to the discretization of
a-first-order continuous-time system only if a; is negative.
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Table 4.3: response of a first-order discrete-time model a; = 0.5,b; = 1.5

T 0 1 2 3 4 5)
Yy 0 1.5 0.75 1.125 0.937 1.062
Jl.‘y'
1.5 2
4
0,54 Damped
oscillating
response
I 2 3 £ & 6 t

Figure 4.11: Step response of a first order discrete time model (a; = 0.5,b; = 1.5).

We now go back to the method used to describe discrete-time models. The delay
operator ¢! is used to obtain a more compact writing of the recursive (difference)
equations which describe discrete-time models in the time domain (it has the same
function as the operator p = d/dt for continuous-time systems). The following
relations hold:

¢ y(t) =y(t—1) (4.11)

g y(t) = y(t - d)

By using the operator ¢~! , Equation 4.10 is rewritten as

(1+ arg V)y(t) = big u(t) (4.12)

Discrete-time models may also be obtained by the discretization of the differen-
tial equations describing continuous-time models. This operation is used for the
simulation of continuous-time models on a digital computer.

Let us consider Equation 4.8 and approximate the derivative by

dy yt+T,) —y@)

= 4.13
dt T (4.13)
Equation 4.5 will be rewritten as
y(t+Ts) B y(t) 1 G
— = — 4.14
0 ult) = Futt) (414

By multiplying both sides of Equation 4.14 by 7 , and with the introduction of the
normalized time (¢t = t/T) , it follows that
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y(t+1) + <% - 1) y(t) = %Tsu(t) (4.15)

which can be further rewritten as:

(1+aig y(t+1) = biu(t) (4.16)
where
T, G
alzT—1(< 0), blszs

Shifting Equation 4.16 by one step. Equation 4.10 is obtained. We point out that in
order to represent a first-order continuous model with Equation 4.16, the condition
a1 < 0 must be verified. As a consequence, the sampling period T, must be smaller
than time constant 7(T; < T'). This result corresponds to the upper bound in
Equation 4.4 introduced for sampling period selection of a first-order system as a
function of the desired closed loop bandwidth.

If Equation 4.13 is the approximation of the “derivative”, the digital integrator
equation can be directly deduced. Thus, if normalized time is used. Equation 4.13
is written as

%y:pyzﬂﬂ_y@—1%=ﬂ—q*w@) (4.17)

Where (1 — ¢ 1) is now equivalent to p. As the integration is the opposite differen-
tiation, one obtains:

s(t) = / it = %y ~- _1q1y(t) (4.18)

Multiplying both sides of Equation 4.18 by (1 — ¢™') , it follows that

s(t)(1—q~") =y(t) (4.19)
which we can rewrite as
s(t) =s(t—1)+ 1y(t) (4.20)

corresponding to the approximation of the integration operation by mean of the rect-
angular rule, as illustrated in Figure 4.12 (if continuous-time is used, Equation 4.20
is written as

s(t) = s(t — Ts) + Tsy(t)) [34).

4.3.2 Frequency Domain

The study of continuous-time models in the frequency domain has been carried out
considering a periodic input of the complex exponential type

et = cos(wt) + jsin(wt)

or
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Figure 4.13: frequency response of a discrete-time system.

et with s=o0+ jw

For the study of discrete-time models in the frequency domain we shall consider
complex (sampled) exponentials, i.e. sequences resulting from complex continuous-
time exponentials evaluated at the sampling instants ¢t = k7.

These sequences will thus be written as

eWTsk,  esTsk. =1 9.3

Since the discrete-time models being considered are linear, if a signal of a certain
frequency is applied to the input, a signal of the same frequency, but amplified
or attenuated according to the frequency, will be found at the output. This is
summarized in Figure 4.13. in which H(s) is the “transfer function” of the system
that expresses the dependence of the gain and the phase-deviation on the complex
frequency s(s = o + jw).

If the input of the system is in the form e’

k' the output will be

y(t) = H(s)e*"sk (4.21)
and respectively
y(t —1) = H(s)e!TED = =T {(5)esTsk = 5Ty (1) (4.22)

It is thus observed that shifting backward by one step is equivalent to multiplying
by e—*Ts.
Let-now.determine.the transfer function related to the recursive Equation 4.10.
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Figure 4.14: Effect of the transformation z = e*7s.

In this case u(t) = e*T** and the output will be in the form of Equation 4.21. By

also using Equation 4.22 one obtains:

(1 +are*T)H(s)e’*F = e Tt Tk (4.23)
from which results
bleisTS
H(s) = ——M 4.24
(s) 14+ a;e5Ts ( )

We consider now the following change of variable:

z = (4.25)

which corresponds to the transformation of the left half-plane of the s-plane into
the interior of the unit circle centered at the origin in the z-plane, as illustrated by
Figure 4.14.

With the transformation given by Equation 4.25 the transfer function given in
Equation 4.24 becomes

blz*

- 1+ CllZ_l

H(z1 (4.26)

Note that the transfer function in 27! can be directly obtained from the recursive

Equation 4.10 by using the delay operator ¢~ ' (see Equation 4.12), and afterwards
by formally computing the ratio y(¢)/u(t) and replacing ¢=' with z=! | This proce-
dure can obviously be applied to all models described by linear difference equations
with constant coefficients. regardless of their complexity. We also remark that the
transfer functions of discrete-time models are often written in terms of ¢~ ! . It is
of course understood that the meaning of ¢! varies according to the context (delay
operator or complex variable). When ¢~' is considered as a delay operator, the
expression H(q™') is named . “transfer operator”.

It must be observed that the representation by transfer operators can also be used
for models described by linear difference equations with time varying coefficients as
well. In contrast, the interpretation of ¢! as a complex variable 27! is only possible
for linear difference equations with constant coefficients.
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Figure 4.15: Effects of the transformation e*’* on the points located in the “primary
strip” in s-plane.

Properties of the Transformation z = e*'s

The transformation of Equation 4.25 is not bijective because several points in the
s-plane are transformed at the same point in the z-plane. Nevertheless we are
interested in the s-plane being delimited between the two horizontal lines crossing
the points [0, +jws/2] and [0, —jws/2] where ws = 27 fs = 27 /Ty . This region is
called “primary strip”.

The complementary bands are outside the frequency domain of interest if the
conditions of the Nyquist’s theorem (Section 4.2.1) have been satisfied.

Figure 4.15 gives a detailed image of the effects of the transformation z = e
for the points that are inside the “primary strip”. Attention must be focused on an
important aspect for continuous second-order systems in the form:

sTy

G <)
wg + 2Cwos + 2

for which the resonant damped frequency is equal to half the sampling frequency:

wgvl—@:%

The image of their conjugates poles

W
S1,2 = —Cwo i]f

through the transformation z = e*s corresponds to a single point placed on the real
axis in the z- plane and with negative abscissa.

One gets:
. . < -
219 = CSI’QTS — Giconseij%Ts — 67§w0TSeij7r — _€7§w0TS — —¢ 1_c2
Since:
W
Wy = ——F7——
2,/1— (2
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This is the reason why discrete-time models in the form of Equation 4.10 such as

(1+a1q My(t) = big 'u(?)

give oscillating step responses for a; > 0 (damped if | a; |< 1) with period 2T;(see
Section 4.3.1). These first-order discrete-time models have the same poles as the
discrete-time models derived from second-order continuous-time systems having a
damped resonant frequency equal to ws/2 [35].

4.3.3 General Forms of Linear Discrete-time Models
A linear discrete-time model is generally described as

nA np
y(t) ==Y ay(t—i)+ > bu(t —d—1i) (4.27)
i=1 i=1
in which d corresponds to a pure time delay which is an integer multiple of the
sampling period.
Let us introduce the following notations:

na

1+ aq =A™ =1+¢A%(¢™") (4.28)
=1

A*(q_l) =a;+ayqg  + -+ anAq_"A+1 (4.29)
npg ]
> big'=B(¢)=q'B*(¢"") (4.30)
=1

B*(q7") = by + by o A byq BT (4.31)

By using the delay operator ¢~! in Equation 4.27 and taking into account the no-

tations of Equations 4.28 to 4.31, the Equation 4.27 describing the discrete-time
system is written as

Alg™y(t) = ¢ *B(g™")u(t) (4.32)
or in the predictive form (by multiplying both sides by ¢%)

Al y(t+d) = B(g u(t) (4.33)
Equation 4.32 can also be written in a compact form using the pulse transfer
operator
y(t) = H(g "u(?) (4.34)
where the pulse transfer operator is given by
—dpR(,—1
1y _ g “Blgh)
H(qglY)=————- 4.35
@ =" (435)
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The pulse transfer function characterizing the system described by Equation 4.27 is
obtained from the pulse transfer operator given in Equation 4.35 by replacing ¢ !
with 27!

ety = e
A(z71)

Pulse Transfer Function Order

To evaluate the order of a discrete time model represented by the pulse transfer
function in the form of Equation 4.36, the representation in terms of positive power
of z is needed. If d is the system pure time delay expressed as number of samples, n 4
the degree of the polynomial A(27!) and np the degree of the polynomial B(z7!),
one must multiply both numerator and denominator of H(z!) by 2" in order to
obtain a proper pulse transfer function H(z) on the positive powers of z, where

n =mazx(na,np + d)

n represents the discrete-time system order (the higher power of a term in z in
the pulse transfer function denominator).

(4.36)

Example 1:
H ) = 23 (b2t + baz?)
1+ CllZ_l
n=max(1,5) =5
blz + bg
H(z) = ————
(2) 25+ a2t
Example 2:
H(Z_l) blz_l + 622_2

- 1+ alz*1 + Cl2272
n=max(2,2) =2

H() b12+bg
)= ——
22+ a1z + ay

One notes that the order n of an irreducible pulse transfer function also corresponds
to the number of states for a minimal state space system representation associated
to the transfer function [36].

4.3.4 Stability of Discrete-time Systems

The stability of discrete-time systems can be studied either from the recursive (differ-
ences) equation describing the discrete-time system in the time domain, or from the
interpretation of difference equations solutions as sums of discretized exponentials.
We shall use examples to illustrate both these approaches.

Let us assume that the recursive equation is

y(t) = —awy(t —1); y(0) =yo (4.37)
which is obtained from Equation 4.10 when the input u(¢) is identically zero. The
free response-of the system is written as
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y(1) = —ayo;  y(2) = (—a1)’yo;  y(t) = (—a1)'yo (4.38)
The asymptotic stability of the system implies

lim y(t) =0 (4.39)

t—inf

The condition of asymptotic stability thus results from Equation 4.38. It is neces-
sary and sufficient that

lay] < 1 (4.40)

On the other hand, it is known that the solution of the recursive (difference) equa-
tions is of the form (for a first-order system):

y(t) = ke’™s" = k2t (4.41)

By introducing this solution into Equation 4.37, and taking into account Equa-
tion 4.22, one obtains

(1+are™ ke = (1 + a1z k2! = 0 (4.42)

from which it follows that

z =T = ot — Tl Ts — g, (4.43)

For this solution to be asymptotically stable, it is necessary that which implies that
e’’s < 1 and respectively |z| < 1(or|a;| < 1).

However, the term 1 + a;2~! is nothing more than the denominator of the

pulse transfer function related to the system described by Equation 4.10 (see Equa-
tion 4.26).

The result obtained can be generalized. For a discrete-time system to be asymp-
totically stable, all the roots of the transfer function denominator must be inside
the unit circle (see Figure 4.14):

l+taz '+ Fa,z"=0= 2] < 1 (4.44)

In contrast, if one or several roots of the transfer function denominator are in the
region defined by |z| > 1 (outside the unit circle), this implies that Re s > 0 and
thus the discrete-time system will be unstable.

As for the continuous-time case, some stability criteria are available (Jury crite-
rion, Routh-Hurwitz criterion applied after the change of variable w = (z+1)/(2—1)
for establishing the existence of unstable roots for a polynomial in the variable z
with no explicit calculation of the roots.

A helpful tool to test z-polynomial stability is derived from a necessary condition
for the stability of a z~!-polynomial. This condition states: the evaluations of the
polynomial A(27") given by Equation 4.44 in z =1, (A(1)) and in z = —1, (A(—1))
must be positive (the coefficient of A(¢!) corresponding to 2° is supposed to be
positive).
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Example:

(z7') =1-0.52"" (stable system)
1)=1-05=05>0, A(-1)=1+05=15>0
Az =1-05z1 (unstable system)
(1)=—-05<0; A(-1)=25>0

4.3.5 Steady-state Gain

In the case of continuous-time systems [33]. the steady-state gain is obtained by
making s = 0 (zero frequency) in the transfer function. In the discrete case, s = 0
corresponds to

s=0=z=¢T=1 (4.45)

and thus the steady-state gain G(0) is obtained by making z = 1 in the pulse transfer
function. Therefore for the first-order system one obtains:

bzt b
G0) = (#) 1 1
1< =1 —|—CL1

Generally speaking, the steady-state gain is given by the formula

6oy =m0 =He = (05 —pReRL o

In other words, the steady-state gain is obtained as the ratio between the sum of the
numerator coefficients and the sum of the denominator coefficients. This formula
is quite different from the continuous-time systems, where the steady-state gain
appears as a common factor of the numerator (if the denominator begins with 1).

The steady-state gain may also be obtained from the recursive equation describing
the discrete-time models, the steady-state being characterized by u(t) = constant
and

yt) =yt —1) =yt —2).......
From Equation 4.10, it follows that

(1 +an)y(t) = bru(t)

and respectively
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Figure 4.16: Control system using an analog-to-digital converter followed by a zero-
order hold.
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Figure 4.17: Operation of the zero-order hold.

4.3.6 Models for Sampled-data Systems with Hold

Up to this point we have been concerned with sampled-data systems models corre-
sponding to the discretization of inputs and outputs of a continuous-time system.
However, in a computer controlled system, the control applied to the plant is not
continuous. It is constant between the sampling instants (effect of the zero-order
hold) and varies discontinuously at the sampling instants, as is illustrated in Fig-
ure 4.16.

It is important to be able to relate the model of the discretized system, which
gives the relation between the control sequence (produced by the digital controller)
and the output sequence (obtained after the analog-to-digital converter), to the
transfer function H(s) of the continuous-time system. The zero-order hold, whose
operation is reviewed in Figure 4.17 introduces a transfer function in cascade with
H(s) [37].

The hold converts a Dirac pulse given by the digital-to-analog converter at the
sampling instant into a rectangular pulse of duration 7§, which can be interpreted
as the difference between a step and the same step shifted by T;. As the step is the
integral of the Dirac pulse, it follows that the zero-order hold transfer function is

1—e 5T
HZOH(S) = (447)

S

Equation 4.47 allows one to consider the zero-order hold as a filter having a frequency
response given by
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1—e T sin(wTs/2)
H jw) = =T,
zor(jw) j T,/2

From the study of this response in the frequency region 0 < f < f,/2(0 < w < w;,/2),
one can conclude:

—iwTs
Jw

1. The ZOH gain at the zero frequency is equal to: Gzon(0) = T.

2. The ZOH introduces an attenuation at high frequencies. For f = f;/2 one
gets G(fs/2) = 2T, = 0.637T,(—3.92 dB).

3. The ZOH introduces a phase lag which grows with the frequency. This phase
lag is between 0 (for f = 0) and —7/2(for f = f;/2) and should be added to
the phase lag due to H(s).

The global continuous-time transfer function will be

1 —e T
H'(s)= —H(s) (4.48)
s
to which a pulse transfer function is associated. Tables which give the discrete-time
equivalent of systems with a zero-order hold are available. Some typical situations

are summarized in Table 4.4 [38].
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Table 4.4: Pulse transfer functions for continuous-time systems with zero-order hold

H(s) H(z™)
1 T@z_1
s 1—2-1
1+GsT 121;:—1 bl =G(l—e B/T)a = —e BT

blz*1+b2z*2;b1 — G(l _ e(L—TS)/T).

1+a12~1 )

G —sL.

T L < T

b2 = Ge /T (T —1);a; = —e T/
b1371+b2372
w? 1+ai1z= +azz=2
wa+2¢wos+s?
b =1—a(f+20);b = a® + a(“Ld — B)
w=wyy/1—(? a; = —2af; a3 = o
(<1

a=e T 3 = cos(wTy); 0 = sin(wTy)
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Chapter 5

Setup, Modeling and Parameters

Identification of a Magnetic
Levitation Model

5.1 Introduction

Modelling and simulation are very important approaches for designing control sys-
tems. Therefore, laboratory set-ups, which model real processes, and mathematical
models have a significant role [39, 40, 41]. The CE152 is a laboratory magnetic levi-
tation made by Humusoft [42]. Tt is used for studying system dynamics and control
engineering principles from the theoretical point of view and enables a wide range of
practical experiments in the fields of modelling, simulation and control. The goal of
modelling and identification is to prepare a basis for the students’ laboratory assign-
ments, such as designing a multivariable controller that ensures satisfactory control
in the whole operating range. There are two well known modelling approaches: the-
oretical and experimental. Usually, both approaches have to be combined, and used
in modeling of the laboratory magnetic levitation.

A dynamic model of the magnetic levitation for the magnetic force experienced by
the levitated object is a substantial part of the researches on the magnetic levitation
systems. It has been focused on the development of precise magnetic force models
which led to the proposition of several force models over the past years. Most of the
models are generally assuming a squared relationship between the electric current
in the coil and the magnetic force. Peterson et al in [43] proposed a static magnetic
force model assuming that the force is proportional to the magnetic flux squared.
Due to the linear relationship between the magnetic flux and electrical current in
the coil, this assumption leads to a second order relationship between the magnetic
force and the current. The authors in [44, 45] assumed that the magnetic force is
directly proportional to the squared current in the coil and inversely proportional
to the squared gap distance between the electromagnet and the object. Lin et
al [46] assumed that the magnetic force is linearly proportional to the current and
inversely proportional to the forth power of distance. Magnetic Levitation System
CE152 shown in Figure 5.1 has the dynamical properties which can be described
by the motion equation that is based on the balance of all forces, i.e. gravity force,
acceleration force and the magnetic force, the last force is assumed proportional to

53

www.manaraa.com



Figure 5.1: Model of the magnetic levitation system.

the square of the coil current and inversely proportional to the square gap distance
between the electromagnetic and the object [47].

5.2 The Laboratory Magnetic Levitation Set-Up

The CE152 Magnetic Levitation Model is designed for the theoretical study and
practical investigation of basic and advanced control engineering principles. This can
include system dynamics modelling, identification, analysis and various controllers
design by classical and modern methods.

A system configuration for the CE152 follows from Figure 5.2 as shown below
where the system is connected to IBM PC compatible computer. The scheme shows,
that the model interface can be considered at two different levels:

e Physical level - input and output voltage to the coil power amplifier and from
the ball position sensor.

e Logical level - voltage converted by the data acquisition card and scaled to 1
machine unit [MU].

The core part of the model is a steel ball hanging in the magnetic field of the coil.
The position of the ball is measured with a magnetic position sensor. The current for
the coil is amplified by an external amplifier and therefore is directly proportional to
the input voltage. The model is connected to the PC via universal data acquisition
card, like the HUMUSOFT MF614. Note that all the experiments used in this thesis
are done in Matlab-Simulink environment using Real Time Toolbox [48].

Later it will be shown that the Magnetic Levitation Model can be approximated
by a single input single output nonlinear dynamic system of order 2 or 3 depending
on the modeling precision [49].
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Figure 5.2: Interface of the magnetic levitation model CE152 to PC.

5.3 Theoretical Modelling

When modelling a system it is important to find a balance between simplicity and
complexity of the model, according to its purpose and operating conditions [50].
The model has to be clear, concise and flexible, yet it must consider all the relevant
sub-processes in the system. Modelling of dynamic systems is a cyclic process, there-
fore usually many iterations are needed before a satisfactory model is obtained [51].
Sometimes validation of a particular sub-system gives unsatisfactory results. Hence,
another approach has to be considered and some of the previously neglected proper-

ties have to be taken into account [52]. In the following section, modelling procedure
will be described.

5.3.1 Model Structure

The overall model shown in Figure 5.3 consists from the following blocks:
e D/A converter
e The power amplifier
e The ball and coil subsystem
e The position sensor
e A/D converter

Note: the above blocks arrangement is according to the signal flow from left to
right, see Figure 5.3, but we will fellow other arrangement in modelling the different
subsystem, firstly the Power Amplifier, then Ball and Coil Subsystem, then D/A
Converter, then Position Sensor and lastly A/D Converter.

39

www.manaraa.com



Unv Kpa
Yo

Ymu
—

Figure 5.3: Scheme of the Magnetic Levitation Model.

7w )
. /u.] R um [V]
Ml N Qn,

Figure 5.4: The Power Amplifier Internal Structure.

The Power Amplifier

The power amplifier is designed as a source of constant current with the feedback
current stabilization. The power amplifier internal structure is shown in Figure 5.4.
By applying Kirchhoff’s Voltage Law (KVL) at the circuit in Figure 5.4 we get
the following:

di

Uy, = (RC —|—RS)Z'—|—LC% (51)

U, = kam(u — ks Rgi) (5.2)
By solving Equation 5.1 and Equation 5.2, then taking the Laplace transform, we
have the transfer function of amplifier output current I(s) to amplifier input voltage
U(s). Thus, the amplifier and coil subsystem can be modelled with the transfer
function of 1st order as in Equation 5.3, and the power amplifier block is shown in
Figure 5.5,

I(s) g 1
U(s) "Tys+1

where:

k
ki = am 5.4
(Re + Rs) + kam KR, (54)
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Power amplifier
and coil

Figure 5.5: Power Amplifier and Coil Model.

L
T, = - 5.5
(Re + Ry) + kam I R (5:5)
k; is called coil and amplifier gain and 7T}, is called coil and amplifier time constant.
Note: because T, is very small, as we will show later in section 5.2, so Equa-

tion 5.3 becomes:

Ball and Coil Subsystem

This subsystem can be modelled using Lagrange’s Equations, The Lagrangian for
the magnetic levitation is given by Equation 5.7,

1
L(x,2)=T—-V = im:i:2 — mgzx (5.7)

where T, V is the kinetic and the potential energy of the ball respectively. Without
any non-conservative external forces, Lagrange’s equation for the system is given by
Equation 5.8,

dot of d

G0 B i
To include the force F; due to air damping and the input force (electromagnetic
F,,), we simply append them as follows,

mi) +mg =20 (5.8)

dof 0of
f R+ F, .
dios or 4T (5.9)
,L'2
F,, = kcm is given in [44, 45] (5.10)
U
@ ) + by e
—(myz) + mpg = —kpya + ke
L k9 FV (@ — 20)2
. ) 72
mEZ + mgg = —]{JFV{E + kcm (511)

where:
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my = Ball Mass [kg]
F, = Gravity Force [N]

F. = Acceleration Force [N]

F; = Damping Force [N]

x = Distance [m]

xg = Coil Offset [m]

i = Coil Current [A]

g = Gravity Constant [m/s?]
k. = Aggregated Coil constant [N/A]
t = Time [s]
kry = Damping Constant [N.s/m]

Rearranging Equation 5.11, the dynamic differential equation of motion becomes;

%k,

G ko —
mrZ + Kpy X (:r—xg)Q

— Mg (5.12)
Note that in some cases the damping force F} is very small, for example in case of
a low varying tracking signal like a sinusoidal with a very small amplitude and low
frequency, but its large in case of a tracking signal like a square function with a high
frequency, so in the modeling we will consider two cases, the first one with damping
force which is given in Equation 5.12, and the second one without damping force
which is given in Equation 5.13.

i’k
P=——+— — 5.13
Ml = g g (5.13)
If we substitute i = k;u (Equation 5.13), we get
. (kzu)2kc
= — Y — 5.14
myT (= — 0)2 mrg ( )
or
u2kf
P =——"—+ — 5.15
Ml = g g (5.15)
where:

ky = kZk,.

ks is called aggregated coil constant [N/V]
Both Equation 5.12 and Equation 5.13 can be represented in a Simulink model as
shown in Figure 5.6 and Figure 5.7 respectively.

D/A Converter

D/A converter can be represented as a Simulink block as shown in Figure 5.8 and
described by a linear function as in Equation 5.16.

u = kDA“MU""U/O (516)

where:
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i - input current

_1'

Maotion

force

Gravity
force

k_c/{x_0-xp2

variable gap

velocity

1im

sum

damping constant

¥ - output voltage
position

Figure 5.6: The Ball and Coil Subsystem Model (damping force included).

i _ input current

variable gap

{ ked(x 0-xn2 Fi

s
o
1im_k velocity

L E L
" — ¥ _ output
position voltage

Figure 5.7: The Ball and Coil Subsystem Model (damping force excluded).

In1

k_DATu_MU +u_D

Digital to Analog
Canverter
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Figure 5.8: Digital to Analog Converter model.
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Wik k_x"xty_0
In1 = Ot 1
Position Sensor

Figure 5.9: Position Sensor Model.

(AD"y +_MUD
Ir1 s Clut 1
Analog to Digital

Convertar

Figure 5.10: Analog to Digital Model.

u = Model Output Voltage [V]
uyy = DJ/A Converter Input  [MU]
kpa = D/A Converter Gain  [V/MU]
Ug = D/A Converter Offset [V]

Position Sensor

An inductive position sensor is used to measure the ball position. The sensor can
be described with a linear function in Equation 5.17 and a Simulink block as shown
in Figure 5.9.

Y= ko4 (5.17)
where:

k, = Position Sensor Gain  [V/m]

yo = Position Sensor Offset  [m]

¢ = Ball Position [m]

y = Model Output Voltage [V]

A /D Converter

A/D converter can be represented by a Simulink block it is shown in Figure 5.10
and described by a linear function in Equation 5.18.

Yymu = kapy + ymuo (5.18)
where:
ymuv = A/D Converter Output [V]
kap = A/D Converter Gain MU/V]
ymvo = Converter Offset [MU]
y = Model Output Voltage [V]
60

www.manaraa.com



k ed(x 0 - xT2
L wan able gap
v _:: i
T 3

g : hilotionn
voltage [MU] B¢ Cormrter Foweramplifier ¢ aen

and cail
Giravitw
tme

L 4

—

Pogtion - SUEpUL
AD conwerter  limits  Woitage
and
Po dtion sem aer

T wiel oty poctinn

Ball damping

Figure 5.11: The Whole System Model.

Table 5.1: Data at input channel of DAQ.

! y[V] Ymu
1 5 1

2 -5 -1

3 0 0

5.3.2 The Whole System — Simulink Model

Using Equations 5.1- 5.18, a Simulink block diagram of the whole system is developed
and arranged in Figure 5.11;

5.4 Measurements and Identification of the Pa-

rameters

Once the theoretical model of the laboratory magnetic levitation set-up is obtained,
then a thirteen (13) parameters have to be determined: k., ks, zo, mk, Ynmvo, kap,
ug, kpa, ks, Yo, krv, T, and k;, there are two possible approaches:

e Direct measurements of the accessible physical quantities;

e Identification, i.e. experimental estimation of the parameters by means of
measuring inputs and outputs [39].

5.4.1 Parameters of A/D and D/A Converters

In order to identify the A/D converter parameters, a simple experiment is imple-
mented, we apply a different voltage values at the input of the A/D channel and
read the corresponding values at the computer side, and fill in Table 5.1.

In order to identify of D/A converter parameters, a simple experiment is imple-
mented, we assign a different values in Machine Unit (MU) and measure the output
voltage at the outside of DAQ), and fill in Table 5.2.
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Table 5.2: Data at output channel of DAQ.

i upmu ulV]
1 1 5
2 -1 -5
3 0 0

N

Note: V

IN = Amplifier Input ouT2 I— %
il B

OUT2 = System Cunent Output ~ ﬂ o

 OUT1 = Position Sensor Output

OouT1

Figure 5.12: The base diagram of the model.

Based on the measurement in Table 5.1 and Table 5.2, the following parameter
values are obtained:

kpa = 5 [V/MU]
kap = 02 MUV
ymuvo = 0 [MU]

Note: we used Data Acquisition card from Humusoft MF614, and during the ex-
periments above, the DAQ is software selected at 5 volts.

5.4.2 The Power Amplifier

In case the typical values of the discrete electronic components of the power ampli-
fier are available, we can use them to identify the power amplifier transfer function
parameters T, and k; by directly substituting in Equation 5.4 and Equation 5.5. Oth-
erwise, use experimental identification method, applying input signal like a square
function at the input of the block (IN) and record the output signal of the block
(OUT2), see the base unit diagram of the apparatus Figure 5.12.

Both Figure 5.13 and Figure 5.14 show the Experiment results, where k; and T,
can be determined,

ki = 03 [A/V]
T, = 3x107% [3].
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Figure 5.13: The step response of the Power Amplifier block.
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Figure 5.14: Magnified response of the Power Amplifier block.
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Table 5.3: Data for position sensor calibration.

1 Ymu Yi T
1 0.0025 0.0125 0
2 0.774 3.87 6.3 x 1073
0.8
Calibration Curve of the Sensor
0.7f
0.6
0.5
0.4F
0.3
0.2
0.1r
0 .
0 1 2 3 4 5 6 7
x107°

Figure 5.15: Calibration Curve of The Position Sensor.

5.4.3 The Position Sensor

The position sensor can be calibrated by simple ball position measurements as shown
in Table 5.3, note that k,p = 5 for measurements in the table. Note that the first
measurement position is at the bottom travelling point, and the second measurement
point is at the top travelling point
The position sensor parameters can be calculated as follows,

ko = (y2 — v1)/ (22 — 21)

Yo = y1 = 0.0125

k, = 612.3016 [V/m)]
Note:The calibration curve of the position sensor is plotted in Figure 5.15.

5.4.4 Ball and Coil Subsystem

Ball Mass

The mass of the ball is measured by using a precision balance and it’s approximated
numerical value is:
my = 8.4 x 1073 [kg].
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Coil Constant

The coil constant parameters k; and z, are estimated by means of interpolation
technique, two interpolation techniques are used to calculate the coil constant pa-
rameters, firstly we used the Two Point interpolation method, then the Linear
Quadratic (LQ) Optimal method, then we compared between them to choose the
best one according to the least square error or the minimum cost function.

e Two Points Interpolation Method

In Figure 5.19, we processed the data using Two Point interpolation method,
the sample data was 4 points of the system input voltage versus the ball
position,where the ball was nearly at balance against its weight at every point.
By plotting u versus z, and interpolate the data we can obtain a two point
model calibration graph as shown in Figure 5.19.

By equating the magmatic force at the number of different points, at points
x2 and x3 for example, we ca find x( using the equation below:

r3 T2
_ ug  uy
To= 3 1

u3z U2

by substituting with numerical values, we get zo = 0.0095 [m)].

To find k¢, we equate the magnetic force to the weight of the ball at equilibrium
point at specific point,

_ vk
mrg = (x—x0)2

Then:
To—T 2
k= mkgi( QU%O)

By substituting with numerical values, we get k; = 0.71214 x 107%, and k. =
ks k? =7.9126 x 107.

e LQ Optimal Method

If the input data is many points, We processed the data using Optimal Linear
Quadratic method to fit the parameters in an optimal way, this criterion of
optimally is a minimization of the sum of squared errors of estimated equilib-
rium force [53], see Equation 5.19, the sample data is obtained with closed loop
control(here T used a controller designed by the manufacture) with a low and
slowly varying sinusoidal tracking signal, the sample data was a large num-
ber of data points of the system input voltage u(k) versus the ball position
x(k), these sampled two signals z(k) and u(k) are shown in Figure 5.17 and
Figure 5.18 respectively,
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Figure 5.16: Matlab Code of The LQ Optimal Calibration.

2
kf 2
J= Z TEEah meg) (5.19)

using the minimization procedure of the least square error to calculate the
constant zo and after that calculating the constant ky.

Figure 5.16 shows part of matlab code for the L.Q) Optimal Calibration method
by the least square interpolation, and the result of the coil constant parameters
are:

xg = 0.0083 [m]
kp = 0.609%10°° [N/V]
k. = 69x107° [N/A]

Comparison of the Two Interpolation Methods

To compare between the two methods, one should calculate the error by plot-
ting the magnetic force f,, in time domain in each method, and then you can
compare, different plots in Figure 5.19 show clearly the difference between the
two techniques.

It’s clear that the error generated by LQ method is smaller than that by Two
Point method, so the results of the second method (LQ) will be considered.
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Figure 5.19: Plots For Comparison Between Two Interpolation Methods.

Damping Constant

For more accurate and exact model, the ball damping constant kgy should be es-
timated using offline model adaptation, by comparing the real response ¥,., with
the model response Y,,0q Using Parameter Estimation Toolbor through optimization
algorithm like Simplex Search [54]. In this technique the Simulink model is tuned
until the Simulink model matched the real time model to a Least Square Error Cost
Function (LSECF) equals 1.75, after many iterations the following satisffactory re-
sult is obtained.
Note: In Figure 5.20, a group of plots are included to show the process of estimation

and to justify the result.

A summery of model CE152 parameters are listed in table 5.4
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Figure 5.20: Group of plots generated during estimation of the damping constant.

Table 5.4: Parameters for magnetic levitation model CE152.

my Ball Mass [kg] 8.4x10°
T Coil Offset [m] 0.0083

g Accelaration of Gravity|[m/s?] 9.81

k. Aggregated Coil constant [N/A] 6.9 x 107°
kr Damping Constant, [N/V] 0.0609 x 10~°
kry | Damping Constant [N.s/m] 0.03

k; Power Amplifier Gain [A/V] 0.3

T, Power Amplifier Time Constant [s] 3x10°3
kpa | D/A Converter Gain [V/MU] 0.2

Ug D/A Converter Offset [V] 0

kap | A/D Converter Gain [V/MU] 0.2

upwo | A/D Converter Offset [V] 0

kg Position Sensor Gain [V /m] 612.3

Yo Position Sensor Offset [m)] 0.0
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Chapter 6

Control of Magnetic Levitation
Model

6.1 Control

PID controllers are widely used in industrial practice more than 60 years. The
development went from pneumatic through analogue to digital controllers, but the
control algorithm is in fact the same. The PID controller is a standard and proved
solution for the most of industrial control applications. In spite of this fact, there
is not some standard and generally accepted method for PID controller design and
tuning based on known process model.

The selection of the three coefficients of PID controllers is basically a search
problem in a three-dimensional space. Points in the search space correspond to
different selection of a PID controller’s three parameters. By choosing different
points of the parameter space, we can produce, for example, different step responses.
A PID controller can be determined by moving in this search space on a trial-and-
error basis.

The main problem in the selection of the three coefficients is that these coeffi-
cients do not readily translate into the desired performance and robustness charac-
teristic that the control system designer has in mind. Several rules and methods
have been proposed to solve this problem. In this thesis we will consider the root
locus as a design method for PID controller.

6.1.1 Model Linearization

Normally there are two approaches to linearize the nonlinear system [55], numerical
and analytical linearization, analytical linearization is used here.
The standard form of state space model is:

= Ax + Bu
where:
u - system input [uyp],
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x - system state [z v 7],

y - system output [ya],

A, B, C, D - linear model matrices.
The components of system state x were chosen as ball position, ball velocity and
coil current. System state is measured in metric units to make the space state
description more general. To simplify the controller design the system input » and
the output y are scaled to machine units.

Analytical linearization

The state equations of the magnetic levitation are described as follows:

T =0
Yy — _kFV _ kci2
,_U - myg, v—g+ my (zo—x)2
i = kikpaum _ i
- Ta Tu
Ym = kokap (6.2)

where x is the ball position, ¢ is the coil current, wu,, is the model input voltage
and y,, is the A/D converter output. The objective of the control is to keep the
displacement y,,, of the ferric ball under the influence of magnetic force following a
desired trajectory y4 as closely as possible. In order to apply the PID controller for
the magnetic levitation system which is a system with high nonlinearities, we firstly
have to linearize Equation 6.2. According to the equilibrium point [zqg, veo, %00 |,
we obtain the linearization state equations in Equation 6.3 and Equation 6.4,

Ts = Vs
SR 2igoke _ kry 2igoke ;
1‘)6 - (:vo—fvoo)?’mk.m(s myg Vs + (zo—x00)2my, ts
: ikpaus (%)
ts Ta T,
Ym = kakaps (6.3)

Which can be represented in a state space representations as shown below (as A,
B, C and D matrices represent the actual state system matrices),

0 1 0
A — —2idoke __krv 2i00ke
(oo —x0)>my, my, (9300—93?27”1@
0 0 T
[0
B = 0
kikpa
L Tq

D=[0] (6.4)

The numerical values for the state matrices at the equilibrium point [0.0032 0.0
0.5612] are;
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0 1 0
A=|38344 —24 352 |,
0 0 —333.3

D=[0]. (6.5)

6.1.2 Continuous Time Controller Design

Before we can design a controller to stabilize the system, the poles and zeroes of
H (s) should be located. The system transfer function H(s) of the actual position to
the desired position (Equation 6.6) is obtained from the space state representation
in Equation 6.5

y(s) 2154240
H(s) = = 5 —
w(s) ~ (s® + 335.752 — 3034.485 — 1278005.52)
2.154487 x 108
H(s) = 2 — < (6.6)

w(s) (s —60.73)(s + 63.12)(s + 333.3)

Analog PID Controller

To design a standard PID controller for the system with H(s) in Equation 6.6, we
should guess the two zeros of the PID controller, see Equation 6.7.

H.(s) =
K;
= Kp + ? + KdS
_ Kys+ K+ Kys°

s
B Kys? + Kps + K;

(Kd/;(p)s2 + 5+ (Ki/Kp)

T.as+1)(Tas+ 1)
5

_ gl (6.7)

where:
K =K,, K, =K;/K,; K = K;/K,; and T,,,T,, = time constants correspond-
ing with controller zeros.
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Figure 6.1: A root locus of open loop system H(s).

Design and Tuning PID Controller

Investigating the root locus of the open loop of the magnetic levitation system H (s)
(Figure 6.1, we can guess the two zeros of the PID controller, after a number of
trials, we get a satisfactory trajectory which assign the two zeros at -200 and -1.5,
then the PID controller has Equation 6.8.

(s 4+ 200)(s + 1.5)

H.(s) = . (6.8)
s% 4+ 201.5s + 300
He(s) = : (6.9)

Normalizing K, which is the factor of s term in Equation 6.9,

~0.0055% 4 s +1.4888

H,(s) (6.10)
s
Then we can write H.(s)H(s)
~ (0.0055% + s + 1.4888) 2.4591 x 10° (6.11)
N s (5 — 67)(s + 70)(s + 53452) '

Now plot the root locus of the open loop of H.(s)H(s) and tune controller gain K,
that to move the unstable pole as far to the left as possible, also taking on account a
trade—off between minimum overshoot, reasonable control action, and fast transient
response. For every K possible on the root locus trajectory, we tried a number of
step response until we have a good system performance, see Figure 6.2 as one of the
trial to PID tuning, satisfactory performance is met after many trial like the result
in Figure 6.3, the K value was 2. Thus the PID controller parameters are:

K,=2, K;=K,K,=0.005x2=0.01, and K; = K, K] =2 x 1.4888 = 2.97.
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Drerivative Kd

Figure 6.4: Modified analog PID (PI-D) controller.

PID g y PI-D

Figure 6.5: Simulation of PID controller versus PI-D( simulation done under the same
condition).

Modified PID Controller

The modified PID controller with the transfer function in Equation 6.12 and a
Simulink block in Figure 6.4, the modification of the standard one is that the deriva-
tive term processes only the output of the system and not the error signal. By sim-
ulation it has be seen that introducing the modification makes the responses more
smooth as shown in Figure 6.5, while keeping on the stability of the controller, and
also need no further tuning to the standard PID parameters.

O.(s) = (K, + %)E(s) — K4sY (s) (6.12)

6.1.3 Computer Control Design

Figure 6.6 illustrates the different blocks of the computer or digital control system,
the figure also shows that the controller is embedded in the computer as a software,
this software is working in Matlab-Simulink environment.

Discrete PID Controller

The standard analog PID controller can be discretized using ZOH method by the
substitution:

ERT fyl_llsl i

www.manaraa.com



efk) §m¢wm '''''' yik J'E
. i | opac ;
—r(;)—r COMPUTER H# + |# PLANT P apc [h
. T’ TOH i
R o Y 7 I A !

DISCRETIZED PLANT

z—1
= 6.13
=T (6.13)
where:
T, = sampling period [s]
This will give the Z transform of the standard PID as follow:
2T z—1

H.z2) =K, + K; K, 6.14
(Z) pT (Z—l)+ deZ ( )
_ Kpz(z — 1) + KiTs2* + Kq/Ts(z — 1)? (6.15)

z2(z —1)

Discrete Modified PID (PI-D)Controller

This standard discrete PID controller can be modified as discrete PI-D (Equa-
tion 6.16), and has a Simulink model as shown in Figure 6.7.

0ule) = (Ky 4 b )G~ Ka v () (6.16)

Sampling Rate Selection

Selection of sampling rates is an important issue. For economical reasons, sampling
rates are kept as low as possible: A lower rate means that there is more time
available for control algorithm execution, which can thereby be carried out on slower
computers. Digitizing well behaved analog control systems can heavily affect system
response. If sampling frequencies is too low, the systems may even become unstable.
According to the Nyquist criterion [37], the sampling frequency should at least be
twice as high as the bandwidth of the error signal. This bandwidth is bounded by
the system bandwidth, hence w, > 2wp . However, in order to guarantee satisfactory
response, a factor of 10 to 20 may be required.
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Figure 6.7: Discrete PI-D controller.
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Figure 6.8: Closed loop transfer function with tuned PID, desired position to actual
position.

In our case, wp can be determined from frequency response of the desired position
to the actual position Figure 6.8,
ws =20wp
or,
fs = 20fB
When fp = 50H z, then the sampling frequancy f; = 1000H z
The modified discrete PID controller (PI-D) is tested on the Simulink model of
the magnetic levitation, moreover it has been tested on the real time model, this
the controller was able to stabilize both of the Simulink model and real time model,

and has good tracking performance.
Note: The parameters of Discrete PI-D were: K, =2, K; = 2.97, K; = 0.01
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Figure 6.9: root locus of the compensated discretized system.

6.2 Digital Control Using Discrete PID Controller

Discretizing the plant H(s) an Equation 6.6 using ZOH, we have Equation 6.17.

(2) 0.0003309z2 + 0.00122z + 0.0002798
H A
23— 2.7182% 4 2.4322 — 0.7148

Now discretizing H (s)H,(s)(H,(s) after normalizing the term of s Equation 6.10),
we have Equation 6.18

(6.17)

0.0049922% — 0.0048862% — 0.0042762 + 0.004171
H(z)H.(2) = T 3 2
24— 3.7172% + 514722 — 3.1442 + 0.714
We can find K, by plotting the root locus in Figure 6.9 and picking K, = 2

which gives the best response, the step response of the compensated system is in
Figure 6.10.

(6.18)

6.3 Model Validation

Due to instability, the ball position dynamics can not be validated in an open loop
experiment. Therefore, a closed loop experiment is used to validate the model as
shown in Figure 6.11 below.

Therefore, a digital controller PI-D has to be provided, which will enable the
tracking of a position reference w,.; as a square signal with time period 3s (green
line). The comparison between the real response of the position w,., of magnetic
levitation model (red line) and of the model (blue line) as shown in Figure 6.12
shows that the real system response is subject to significant external disturbances.

Also Figure 6.13 shows the input signal u provided by the controller in case of
the real system.is.the green line and in case of the model is the blue line. From the
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Figure 6.12: Simulation of closed loop PID control - Desired, measured and simu-
lated position.

comparison we can see that the signals are quite similar in all the recorded period
except from (600-900), which occur due to some noise.
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Chapter 7

Building a Laboratory Magnetic
Levitation System Model

7.1 Introduction

The idea of building a laboratory magnetic levitation system comes after working on
the ready made model CE 152 from HUMUSOFT, After searching the price of the
apparatus we found it cost a lot of money, we searched the design of different models,
then we tried to design a model and, we tried different designes, until we succeeded
to build a nice shape one. Our model could be used in visual demonstrations of
control principles and electronics designs.

The model has been stabilized by a proportional to derivative (PD) controller
and a simple electromagnetic design for a given sphere have been implemented in
this educational model and the performance of the system is investigated [56].

7.2 Magnetic Levitation System

In this section a general description of the magnetic levitation system considered in
this work is presented. A general scheme of the levitator considered in this work
is shown in Figure 7.1, where it is possible to identify the main components of
the system. Figure 7.1 shows the principle of a magnetic levitation system using
a controlled electromagnet. The position of the steel ball is sensed by an optical
transducer comprising a light source and a photocell; the quantity of light falling on
the photocell varies with the position of the ball, so the voltage output is a measure
of the ball position. The photocell output is compared with a reference voltage
which corresponds to the desired position of the ball; the difference represents a
position error. This error voltage is passed to a DC amplifier which controls the
current in the electromagnet, so that any displacement of the ball from its desired
position causes a corrective change in the magnet current. Feedback control systems
of this kind require additional circuitry to prevent instability; this is the function of
the compensation block in Figure 7.1.
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Figure 7.1: General Scheme of Magnetic Levitation System.

7.2.1 Position Measurement Subsystem

One of the main components of the levitator is the position measurement subsystem.
This substantial part of the prototype was designed by means of an infrared emitter-
detector formed by a couple of standard infrared LED (IRED) as emitter and a
phototransistor as a detector. The main advantages of this arrangement are low
cost, easy implementation and free maintenance properties. In Figure 7.1 one can
see the physical location of the transmitter and captor. This device is able to detect
changes in the position of the levitating object on the z axis but it is insensitive
to any movement on the plane z-y. The emitter and captor are firmly fixed to the
structure of the levitation device, and the emission of the infrared signal is constant.
The object in levitation (sphere) is placed directly between the emitter and the
detector see Figure 7.1. In this way, the intensity variation of the infrared signal
collected by the detector depends exclusively on the position of the levitated object
on the vertical axis. As a result, it is possible to obtain a relation of the voltage
generated between terminals of the captor, as a function of the vertical position of
the sphere, with an appropriate precision.

7.2.2 Magnetic Induction Subsystem

The intensity of the magnetic force produced by the inductor depends on the electric
current that circulates the iron core. It is important to mention that a nucleus with
type I laminations has been selected for the construction of the induction system
and a wire of 0.6 mm of diameter and a bout 1200 turns was used. Figure 7.2 is an
image of the laboratory magnetic levitation system, shows the construction of the
full system and you can see also the shape of the core (cylindrical with 20 mm in
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Figure 7.2: Prototype of laboratory magnetic levitation system.

diameter and 100 mm in length).

7.3 System Modelling

To have the students understand the control theory of the system, general model
should be constructed.

The system model can be divided into three blocks, and the whole block diagram
is in Figure 7.3.

e The linear power amplifier (the power transistor circuit).
e The ball and coil subsystem.

e The position sensor (IRED and phototransistor).

7.3.1 The Linear Power Amplifier
This block has to be modeled as current amplifier by

or in Laplace form as:
I(s)
=k 7.1
0(s) (7.1)

Where:
k; = Amplifier Gain [A/V]
i = Amplifier Output Current [A]
u-=-Amplifier Input Voltage [V]
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7.3.2 The Ball and Coil Subsystem

The motion equation is based on the balance of all forces acting on the ball, i.e.
gravity force Fy, electromagnetic force f,,, and the acceleration force Fy,,

Fa:fm_Fg

Fy= Mg
A’z

F,=M— 7.2
pr (7.2)

Where:

M = Ball Mass [kg|

x = Ball Position [m]

g = Gravity Constant [m.s™?]
Below is the derivation of the magnetic force and the transfer function of the
block [57]. The inductance of the coil varies with the position of the ball. When the
ball is in contact with the magnet the coils inductance is Ly + L;. When the ball
is removed the inductance of the coil is L;. The varying inductance between these
two extremes is given by

L(z) = Ly + Loe™a (7.3)

The magnetic co energy of the system is a function of coil current ¢ and separation
x

Wi, z) = %L(x)z'? (7.4)

The force of magnetic origin acting on the ball is given by [57]

——i‘e"a (7.5)

where a is a constant depends on the diameter of the iron core and the mass of
the ball.

When the ball is in its equilibrium position, the gravitational force is equal to
the magnetic force acting on the ball. At z =dand i=1

~ Lo _a
Ld = me a (7 6)
L N2L
Mg="¢ a2 =24y (7.7)
2a 2a

Where:

N = The number of turns in the coil

Ly = The incremental inductance at x = d due to a single turn coil.
Rearranging Equation 7.7 we can get an equation for .

/ a
I =,/2Mg—— 7.8
The force.of magnetic origin acting on the ball is given by Equation 7.5
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o = fi2) =~ Loe™57 (7.9)

Consider a perturbation about the equilibrium point at xt =d, 1 =1

r=d+ a2
i=1+7
fm = Fu+ ' (7.10)
By Taylor’s series expansion
) 0 ,0
fli,2) = f(I,d) = x’% 1.4 -H'a—J; I.d (7.11)
This now becomes
1 I
f = ﬁLoe*%I%' - aLoe’gh' (7.12)
The mechanical force is
d?*z’
fm=Mg+M—g (7.13)

At equilibrium Mg = f(I,d) and the incremental equation of motion becomes

>’ N?L4I? , N?L,I
— T+ 1=
dt? 2a? a
This gives us the differential equation that describes the system. By getting the
Laplace transform of this equation, the transfer function can be derived.

0 (7.14)

X(s) N2L4I
= = 7.15)
N2L,412 (
I(s)  Ms?— S
Using Equation 7.8 gives
2
X(s) _ _—7

(7.16)

I(s) s2—w?

Where w7 = y/Z. This is the plant transfer function, It relates the coil current and
the balls position.

7.3.3 The Position Sensor

The optical position sensor block is used to measure the ball position z, this block
can be approximated with a linear function:

vy = G

or in Laplace form as:
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Figure 7.3: Block diagram on the compensated system.

>

(s)
X(s)

=G, (7.17)

Where:
v, = The Sensor Output Voltage [V]
Gs = The Gain Of The Sensor [V/m]

7.4 Control of the Magnetic Levitation System

The system is actually nonlinear and instable, it has been linearized in section 3,
and the transfer function is shown as instable with a pole in right half plan, w,, so
a suitable controller should be designed to stabilize the system, in other words to
pull the pole in the right half plan to the left half plane, the PD controller is a good
choice to stabilize the system.

7.4.1 The PD Controller

The output of light sensor detector circuit is subtracted from position reference
voltage by a difference amplifier to generate an error signal v, and then fed to PD
controller as shown in Figure 7.3, the Laplace form of PD controller is Equation 7.18.

dv,
= Kpwe +Tyg—
UpD p(ve + ddt)
VPD(S) = Kp(l + Tds)Ve(s) (718)

Where:
vpp = PD Controller Output [V].
ve = The Error Input Voltage Of The Controller [V].
Kp = PD Controller Proportional Constant.
= Differential Time Constant [s].

Ol LAC U Zyl_i.lbl
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7.4.2 The Electronic Circuit of Magnetic Levitation System

Figure 7.4 shows a practical implementation of the whole electronic circuit of the
system. The optical position transducer is formed from the infra-red LED D1 and
the phototransistor Q1. The position of the steel ball controls the amount of light
falling on the phototransistor, and thus varies the emitter current, which in turn
varies the voltage drop in the emitter load resistor RV1. This resistor is made
variable to compensate for different phototransistor sensitivities, so that the circuit
can be set up to give a standard output voltage [58].

The output of the position transducer is compared with an adjustable position
reference voltage from RV 2; the difference is an error signal, which appears at the
output of op-amp U1. This error signal is used to control the current in the magnet
coil. There is an external input to the error amplifier, which allows you to investigate
the dynamic behaviour of the system.

Current in the magnet coil is supplied by the magnet driver - a feedback cir-
cuit based on the power transistor Q2. Note that Q2 is actually two transistors
connected as a Darlington pair, which behaves as a single transistor with a high
current gain - typically several thousand. Current feedback is applied via resistor
R13, which senses the current in the coil; the effect is to make the magnet current
proportional to the voltage at the input of the circuit.

A critical part of the system is the compensator circuit, based on op-amp U2,
which links the error amplifier to the magnet driver. This is effectively a combination
of an inverting amplifier and a differentiator; its action can be explained as follows. If
the capacitors C1 and C2 were omitted, the magnet current would be proportional
to the ball displacement. Since the force of attraction depends on the current, the
system would have a spring-like action: for small displacements, the restoring force
would be proportional to the displacement, so the ball would tend to oscillate like
a mass on a spring. In itself this behaviour would be a nuisance, but not damaging.
The problem is the inductance of the magnet coil, which introduces a phase lag,
or time delay, between a change in the ball position and a corrective change in the
magnet current. This lag has the effect of making the system unstable, so that any
oscillation tends to grow in amplitude until the magnet loses control of the ball. To
damp this oscillation of the ball, the capacitor C1 adds a control term proportional
to the rate of change of displacement, in other words velocity. This derivative term
counteracts the effect of inductance. It causes a change in the magnet current
proportional to the velocity, but in a direction which opposes the motion; thus the
velocity will be reduced, and the amplitude of the oscillation will keep decreasing
until the ball ceases to move [59].

The additional capacitor C2 in the circuit limits the gain at high frequencies; this
does not affect the control action, but it prevents a high-frequency oscillation which
can occur in this kind of circuit. Resistor R9 compensates for the base-emitter drop
in the Darlington transistor Q2.

88

www.manaraa.com



past % l ?ﬁ ERROR AMPLIFI 1ER
Sl RV3 GAIN
Transducer 10k
5 = T

R7

c1

=
R8

=
60N "

fo—ro

Figure 7.4: Levitation Controller Circuit.

7.5 Circuit Construction and Testing

7.5.1 Components and Facilities

You will need the following components:

Circuit board.

Power transistor TIP 121, heat sink, nut and bolt.

Terminal pins (6).

Potentiometers 10k€2(3).

IC Socket (2).

741 Op Amps (2).

IN4148 Diode.

Resistors: 10, 1kQ(2), 4.7kQ(2), 10kQ(2), 22kQ(2), 4Tk, 100kS, 2209.
Capacitors: 22nF,100nF(2),680nF.

Phototransistor BP X 38.

IR Transmitter.

7.5.2 Preliminary Tests

Position transducer
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Figure 7.5: Seven Different Position of the Potentiometer

Connect the digital multimeter to measure the voltage at the output of the
position transducer with respect to Gnd, using the Pos o/p terminal pin on the
board, and make the following checks.

1. When there is nothing in the path of the (invisible) infra-red light beam, the
voltage should lie between 7 V" and 10 V. If it is outside this range, adjust the
potentiometer on the magnet terminal block (RV1) to give a value close to
8 V. If you cannot obtain a voltage in the range (7 - 10)V, make necessarily
correction.

2. Interrupt the light beam, and see whether the transducer voltage falls below
1 V. If it does not, make necessarily correction.

Control circuit

The two potentiometers in the control circuit have a critical effect on the op-
eration of the system. The position reference potentiometer will need to be set
correctly, as described below. But the stability of the system is affected by the gain
potentiometer, so it will be necessary to set this control to defined positions. Al-
though there are no scale markings on the potentiometer, seven different positions
are easily distinguished see Figure 7.5.

If you have used the standard layout for the board, the gain varies from zero in
position 1 to maximum in position 7. If you have modified the layout, check whether
you need to reverse the numbers. Proceed as follows to test the system.

1. Set the gain potentiometer RV3 to the middle position 4.

2. Turn the position reference potentiometer RV2, and observe the current mon-
itored by the power supply meter. With nothing in the path of the infra-red
light beam, you should be able to vary the current smoothly between zero and
a maximum of about 1.2 A.

3. Set the position reference potentiometer as follows: increase the setting until
the current is at its maximum; and then reduce it slowly until the current just
starts to decrease.

4. Try interrupting the infra-red light beam with your hand. You should be able
to reduce the current smoothly to zero. If this does not happen, switch off
and look for wiring faults.

5. If you cannot get the control circuit to behave as described, look for faulty
components.
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7.5.3 Levitating the Ball

If the previous tests were successful, the system is probably working and you can
try levitating a ball as follows.

1. Start with the ball away from the magnet, so that there is nothing in the path
of the light beam. Use the power-supply meter to monitor the current in the
positive supply line.

2. Try raising the ball towards the magnet. You should find a balance point where
the current falls to about 0.6A and the magnet force balances the weight of
the ball. Gently release the ball; it will probably remain levitated.

3. If the levitation is unstable, remove the ball and reduce the gain by turning
the gain potentiometer to position 3 (see section 3.3).

4. Re-adjust the position reference potentiometer as before, and try again.

5. If you still cannot get the ball to levitate, try making small adjustments to
the position reference control. If necessary, use position 2 for the gain poten-
tiometer; but it is more likely that there is a fault in the circuit

6. When you have got the ball levitated, you should be able to raise and lower
its position by several millimeters by adjusting the position reference control.

7. This simple system is not very good at coping with sudden disturbances. You
can easily verify this by thumping the table with your fist: it does not take a
very large thump to make the ball drop.

7.6 Investigating the System

7.6.1 Sine-Wave Response

This test uses a laboratory function generator to supply an external input to the
levitation system. And an oscilloscope to examine the response. The signal is
applied to the Ext i/p terminal of the control circuit, it has the effect of altering the
position reference.

1. Switch off the power supply. Connect the oscilloscope channel IT to the output
of the function generator.

2. Connect the signal lead of channel I to the output of the position transducer:
this is the pin labeled Pos o/p on the control circuit board Figure 7.1. Leave
the channel I earth (ground) Lead unconnected.

3. Select a sine-wave output from the function generator, and set the amplitude
to zero. Select the frequency range (1 — 10) Hz, and set the frequency dial to
0.5 - this is below 1 on the dial.
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4. Levitate the ball again, and slowly increase the signal amplitude until you
have the largest value that works reliably. If the ball drops off. Reduce the
amplitude and try again. You should be able to get the ball to move up and
down by several millimeters with an amplitude setting between 5 and 10 V.
If necessary, adjust the position reference and gain controls.

5. The scope display should show two horizontal lines moving up and down to-
gether at 0.5 Hz. Channel II effectively shows the change in the position
reference resulting from the external input to the control circuit; channel I
shows the resulting change in the ball position.

6. Reduce the signal amplitude by about a half. and increase the signal frequency
to 5 Hz. Adjust the scope channel I and II settings and the time base setting
to display one cycle of each waveform on the screen; you may need to adjust
the trigger controls to get a stable display. Make sure that chopped mode is
selected (DUAL and ADD pushbuttons both in).

You should see a sine-wave shape for the signal input on channel II, and a similar
shape for the ball position on channel I. If the position waveform is very distorted, try
adjusting the position reference control. Similarly you can investigate the triangle-
wave response and the square-wave response.

7.6.2 Square-Wave Response

A square-wave input is a very severe test for the suspension system. This wave
shape makes sudden changes in the demanded ball position, which require a corre-
sponding increase or decrease in the coil current; but the inductance of the magnet
coil prevents the current from changing suddenly. The result is a temporary loss of
control, followed by an oscillation in the ball position as the system recovers. You
can observe it as follows.

1. Reduce the amplitude to zero and select a square-wave output from the func-
tion generator. Leave the frequency set to 5 Hz.

2. With the ball suspended, slowly increase the signal amplitude to about 1 V.
If the suspension becomes unstable, reduce the amplitude. The motion of the
ball is too small to observe directly, but you can view the position signal on
the scope.

3. Select AC coupling for scope channel I, so that you can increase the sensitiv-
ity sufficiently to observe the waveforms. Adjust the scope settings to get a
clear display of both waveforms. You should now see a damped oscillation su-
perimposed on the square-wave response. The sloping top and bottom of the
response waveform is caused by the scope; you can confirm this by selecting
AC coupling for channel II.
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Chapter 8

Conclusions and Suggestions

As a result of this experimental research, a simple control approach was presented,
which involves a modified PID controller (PI-D) applied on the linearized model.
As modeling and identification of a laboratory magnetic levitation was dealt with,
the CE 152 laboratory magnetic levitation made by Humusoft was presented as a
single input a single output. The modeling of magnetic levitation was systemati-
cally tackled by disassembling the system into simpler subsystems, i.e. modeling of
the sensors, power amplifier dynamics and ball and coil subsystem dynamics. Fur-
thermore, the A/D and D/A models have been modeled separately. In addition,
measurement and identification of all the parameters needed was illustrated. Fi-
nally, validation of the developed mathematical model was treated. The validation
results with successful experiments suggest that the developed mathematical model
adequately represents the laboratory magnetic levitation.

In the final conclusion of this thesis, an educational magnetic levitation model
have been built and PD controller have been designed to stabilize the system.

The robustness of the PID controller is generally based on the system’s model.
Here we adopt several idealizing assumption to establish the system’s model, and this
may result in ignoring many nonlinear characteristics. Since the magnetic levitation
system has many uncertainties, e.g. magnetic field distribution, variation of coil
inductance, etc. We may consider these components to establish a more accurate
model for further performance.

Finally, T suggest building a number of magnetic levitation apparatuses that
could be used as a training media in schools and universities.
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